mult.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
  5. * Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  6. *
  7. * StarPU is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published by
  9. * the Free Software Foundation; either version 2.1 of the License, or (at
  10. * your option) any later version.
  11. *
  12. * StarPU is distributed in the hope that it will be useful, but
  13. * WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  15. *
  16. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  17. */
  18. /*
  19. * This example shows a simple implementation of a blocked matrix
  20. * multiplication. Note that this is NOT intended to be an efficient
  21. * implementation of sgemm! In this example, we show:
  22. * - how to declare dense matrices (starpu_matrix_data_register)
  23. * - how to manipulate matrices within codelets (eg. descr[0].blas.ld)
  24. * - how to use filters to partition the matrices into blocks
  25. * (starpu_data_partition and starpu_data_map_filters)
  26. * - how to unpartition data (starpu_data_unpartition) and how to stop
  27. * monitoring data (starpu_data_unregister)
  28. * - how to manipulate subsets of data (starpu_data_get_sub_data)
  29. * - how to construct an autocalibrated performance model (starpu_perfmodel)
  30. * - how to submit asynchronous tasks
  31. */
  32. #include <string.h>
  33. #include <math.h>
  34. #include <sys/types.h>
  35. #include <sys/time.h>
  36. #include <pthread.h>
  37. #include <signal.h>
  38. #include <starpu.h>
  39. static float *A, *B, *C;
  40. static starpu_data_handle_t A_handle, B_handle, C_handle;
  41. static unsigned nslicesx = 4;
  42. static unsigned nslicesy = 4;
  43. static unsigned xdim = 1024;
  44. static unsigned ydim = 1024;
  45. static unsigned zdim = 512;
  46. /*
  47. * That program should compute C = A * B
  48. *
  49. * A of size (z,y)
  50. * B of size (x,z)
  51. * C of size (x,y)
  52. |---------------|
  53. z | B |
  54. |---------------|
  55. z x
  56. |----| |---------------|
  57. | | | |
  58. | | | |
  59. | A | y | C |
  60. | | | |
  61. | | | |
  62. |----| |---------------|
  63. */
  64. /*
  65. * The codelet is passed 3 matrices, the "descr" union-type field gives a
  66. * description of the layout of those 3 matrices in the local memory (ie. RAM
  67. * in the case of CPU, GPU frame buffer in the case of GPU etc.). Since we have
  68. * registered data with the "matrix" data interface, we use the matrix macros.
  69. */
  70. static void cpu_mult(void *descr[], __attribute__((unused)) void *arg)
  71. {
  72. float *subA, *subB, *subC;
  73. uint32_t nxC, nyC, nyA;
  74. uint32_t ldA, ldB, ldC;
  75. /* .blas.ptr gives a pointer to the first element of the local copy */
  76. subA = (float *)STARPU_MATRIX_GET_PTR(descr[0]);
  77. subB = (float *)STARPU_MATRIX_GET_PTR(descr[1]);
  78. subC = (float *)STARPU_MATRIX_GET_PTR(descr[2]);
  79. /* .blas.nx is the number of rows (consecutive elements) and .blas.ny
  80. * is the number of lines that are separated by .blas.ld elements (ld
  81. * stands for leading dimension).
  82. * NB: in case some filters were used, the leading dimension is not
  83. * guaranteed to be the same in main memory (on the original matrix)
  84. * and on the accelerator! */
  85. nxC = STARPU_MATRIX_GET_NX(descr[2]);
  86. nyC = STARPU_MATRIX_GET_NY(descr[2]);
  87. nyA = STARPU_MATRIX_GET_NY(descr[0]);
  88. ldA = STARPU_MATRIX_GET_LD(descr[0]);
  89. ldB = STARPU_MATRIX_GET_LD(descr[1]);
  90. ldC = STARPU_MATRIX_GET_LD(descr[2]);
  91. /* we assume a FORTRAN-ordering! */
  92. unsigned i,j,k;
  93. for (i = 0; i < nyC; i++)
  94. {
  95. for (j = 0; j < nxC; j++)
  96. {
  97. float sum = 0.0;
  98. for (k = 0; k < nyA; k++)
  99. {
  100. sum += subA[j+k*ldA]*subB[k+i*ldB];
  101. }
  102. subC[j + i*ldC] = sum;
  103. }
  104. }
  105. }
  106. static void init_problem_data(void)
  107. {
  108. unsigned i,j;
  109. /* we initialize matrices A, B and C in the usual way */
  110. A = (float *) malloc(zdim*ydim*sizeof(float));
  111. B = (float *) malloc(xdim*zdim*sizeof(float));
  112. C = (float *) malloc(xdim*ydim*sizeof(float));
  113. /* fill the A and B matrices */
  114. srand(2009);
  115. for (j=0; j < ydim; j++)
  116. {
  117. for (i=0; i < zdim; i++)
  118. {
  119. A[j+i*ydim] = (float)(starpu_drand48());
  120. }
  121. }
  122. for (j=0; j < zdim; j++)
  123. {
  124. for (i=0; i < xdim; i++)
  125. {
  126. B[j+i*zdim] = (float)(starpu_drand48());
  127. }
  128. }
  129. for (j=0; j < ydim; j++)
  130. {
  131. for (i=0; i < xdim; i++)
  132. {
  133. C[j+i*ydim] = (float)(0);
  134. }
  135. }
  136. }
  137. static void partition_mult_data(void)
  138. {
  139. /* note that we assume a FORTRAN ordering here! */
  140. /* The BLAS data interface is described by 4 parameters:
  141. * - the location of the first element of the matrix to monitor (3rd
  142. * argument)
  143. * - the number of elements between columns, aka leading dimension
  144. * (4th arg)
  145. * - the number of (contiguous) elements per column, ie. contiguous
  146. * elements (5th arg)
  147. * - the number of columns (6th arg)
  148. * The first elements is a pointer to the data_handle that will be
  149. * associated to the matrix, and the second elements gives the memory
  150. * node in which resides the matrix: 0 means that the 3rd argument is
  151. * an adress in main memory.
  152. */
  153. starpu_matrix_data_register(&A_handle, 0, (uintptr_t)A,
  154. ydim, ydim, zdim, sizeof(float));
  155. starpu_matrix_data_register(&B_handle, 0, (uintptr_t)B,
  156. zdim, zdim, xdim, sizeof(float));
  157. starpu_matrix_data_register(&C_handle, 0, (uintptr_t)C,
  158. ydim, ydim, xdim, sizeof(float));
  159. /* A filter is a method to partition a data into disjoint chunks, it is
  160. * described by the means of the "struct starpu_data_filter" structure that
  161. * contains a function that is applied on a data handle to partition it
  162. * into smaller chunks, and an argument that is passed to the function
  163. * (eg. the number of blocks to create here).
  164. */
  165. /* StarPU supplies some basic filters such as the partition of a matrix
  166. * into blocks, note that we are using a FORTRAN ordering so that the
  167. * name of the filters are a bit misleading */
  168. struct starpu_data_filter vert =
  169. {
  170. .filter_func = starpu_vertical_block_filter_func,
  171. .nchildren = nslicesx
  172. };
  173. struct starpu_data_filter horiz =
  174. {
  175. .filter_func = starpu_block_filter_func,
  176. .nchildren = nslicesy
  177. };
  178. /*
  179. * Illustration with nslicex = 4 and nslicey = 2, it is possible to access
  180. * sub-data by using the "starpu_data_get_sub_data" method, which takes a data handle,
  181. * the number of filters to apply, and the indexes for each filters, for
  182. * instance:
  183. *
  184. * A' handle is starpu_data_get_sub_data(A_handle, 1, 1);
  185. * B' handle is starpu_data_get_sub_data(B_handle, 1, 2);
  186. * C' handle is starpu_data_get_sub_data(C_handle, 2, 2, 1);
  187. *
  188. * Note that here we applied 2 filters recursively onto C.
  189. *
  190. * "starpu_data_get_sub_data(C_handle, 1, 3)" would return a handle to the 4th column
  191. * of blocked matrix C for example.
  192. *
  193. * |---|---|---|---|
  194. * | | | B'| | B
  195. * |---|---|---|---|
  196. * 0 1 2 3
  197. * |----| |---|---|---|---|
  198. * | | | | | | |
  199. * | | 0 | | | | |
  200. * |----| |---|---|---|---|
  201. * | A' | | | | C'| |
  202. * | | | | | | |
  203. * |----| |---|---|---|---|
  204. * A C
  205. *
  206. * IMPORTANT: applying filters is equivalent to partitionning a piece of
  207. * data in a hierarchical manner, so that memory consistency is enforced
  208. * for each of the elements independantly. The tasks should therefore NOT
  209. * access inner nodes (eg. one column of C or the whole C) but only the
  210. * leafs of the tree (ie. blocks here). Manipulating inner nodes is only
  211. * possible by disapplying the filters (using starpu_data_unpartition), to
  212. * enforce memory consistency.
  213. */
  214. starpu_data_partition(B_handle, &vert);
  215. starpu_data_partition(A_handle, &horiz);
  216. /* starpu_data_map_filters is a variable-arity function, the first argument
  217. * is the handle of the data to partition, the second argument is the
  218. * number of filters to apply recursively. Filters are applied in the
  219. * same order as the arguments.
  220. * This would be equivalent to starpu_data_partition(C_handle, &vert) and
  221. * then applying horiz on each sub-data (ie. each column of C)
  222. */
  223. starpu_data_map_filters(C_handle, 2, &vert, &horiz);
  224. }
  225. static struct starpu_perfmodel mult_perf_model =
  226. {
  227. .type = STARPU_HISTORY_BASED,
  228. .symbol = "mult_perf_model"
  229. };
  230. static struct starpu_codelet cl =
  231. {
  232. /* we can only execute that kernel on a CPU yet */
  233. .where = STARPU_CPU,
  234. /* CPU implementation of the codelet */
  235. .cpu_funcs = {cpu_mult, NULL},
  236. /* the codelet manipulates 3 buffers that are managed by the
  237. * DSM */
  238. .nbuffers = 3,
  239. .modes = {STARPU_R, STARPU_R, STARPU_W},
  240. /* in case the scheduling policy may use performance models */
  241. .model = &mult_perf_model
  242. };
  243. static int launch_tasks(void)
  244. {
  245. int ret;
  246. /* partition the work into slices */
  247. unsigned taskx, tasky;
  248. for (taskx = 0; taskx < nslicesx; taskx++)
  249. {
  250. for (tasky = 0; tasky < nslicesy; tasky++)
  251. {
  252. /* C[taskx, tasky] = A[tasky] B[taskx] */
  253. /* by default, starpu_task_create() returns an
  254. * asynchronous task (ie. task->synchronous = 0) */
  255. struct starpu_task *task = starpu_task_create();
  256. /* this task implements codelet "cl" */
  257. task->cl = &cl;
  258. /*
  259. * |---|---|---|---|
  260. * | | * | | | B
  261. * |---|---|---|---|
  262. * X
  263. * |----| |---|---|---|---|
  264. * |****| Y | |***| | |
  265. * |****| | |***| | |
  266. * |----| |---|---|---|---|
  267. * | | | | | | |
  268. * | | | | | | |
  269. * |----| |---|---|---|---|
  270. * A C
  271. */
  272. /* there was a single filter applied to matrices A
  273. * (respectively B) so we grab the handle to the chunk
  274. * identified by "tasky" (respectively "taskx). The "1"
  275. * tells StarPU that there is a single argument to the
  276. * variable-arity function starpu_data_get_sub_data */
  277. task->handles[0] = starpu_data_get_sub_data(A_handle, 1, tasky);
  278. task->handles[1] = starpu_data_get_sub_data(B_handle, 1, taskx);
  279. /* 2 filters were applied on matrix C, so we give
  280. * starpu_data_get_sub_data 2 arguments. The order of the arguments
  281. * must match the order in which the filters were
  282. * applied.
  283. * NB: starpu_data_get_sub_data(C_handle, 1, k) would have returned
  284. * a handle to the column number k of matrix C.
  285. * NB2: starpu_data_get_sub_data(C_handle, 2, taskx, tasky) is
  286. * equivalent to
  287. * starpu_data_get_sub_data(starpu_data_get_sub_data(C_handle, 1, taskx), 1, tasky)*/
  288. task->handles[2] = starpu_data_get_sub_data(C_handle, 2, taskx, tasky);
  289. /* this is not a blocking call since task->synchronous = 0 */
  290. ret = starpu_task_submit(task);
  291. if (ret == -ENODEV) return ret;
  292. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
  293. }
  294. }
  295. return 0;
  296. }
  297. int main(__attribute__ ((unused)) int argc,
  298. __attribute__ ((unused)) char **argv)
  299. {
  300. int ret;
  301. /* start the runtime */
  302. ret = starpu_init(NULL);
  303. if (ret == -ENODEV)
  304. return 77;
  305. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  306. /* initialize matrices A, B and C and register them to StarPU */
  307. init_problem_data();
  308. /* partition matrices into blocks that can be manipulated by the
  309. * codelets */
  310. partition_mult_data();
  311. /* submit all tasks in an asynchronous fashion */
  312. ret = launch_tasks();
  313. if (ret == -ENODEV) goto enodev;
  314. /* wait for termination */
  315. starpu_task_wait_for_all();
  316. /* remove the filters applied by the means of starpu_data_map_filters; now
  317. * it's not possible to manipulate a subset of C using starpu_data_get_sub_data until
  318. * starpu_data_map_filters is called again on C_handle.
  319. * The second argument is the memory node where the different subsets
  320. * should be reassembled, 0 = main memory (RAM) */
  321. starpu_data_unpartition(A_handle, 0);
  322. starpu_data_unpartition(B_handle, 0);
  323. starpu_data_unpartition(C_handle, 0);
  324. /* stop monitoring matrix C : after this, it is not possible to pass C
  325. * (or any subset of C) as a codelet input/output. This also implements
  326. * a barrier so that the piece of data is put back into main memory in
  327. * case it was only available on a GPU for instance. */
  328. starpu_data_unregister(A_handle);
  329. starpu_data_unregister(B_handle);
  330. starpu_data_unregister(C_handle);
  331. free(A);
  332. free(B);
  333. free(C);
  334. starpu_shutdown();
  335. return 0;
  336. enodev:
  337. starpu_shutdown();
  338. return 77;
  339. }