123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2010-2011 Université de Bordeaux 1
- * Copyright (C) 2010 Mehdi Juhoor <mjuhoor@gmail.com>
- * Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- /*
- * This example shows a simple implementation of a blocked matrix
- * multiplication. Note that this is NOT intended to be an efficient
- * implementation of sgemm! In this example, we show:
- * - how to declare dense matrices (starpu_matrix_data_register)
- * - how to manipulate matrices within codelets (eg. descr[0].blas.ld)
- * - how to use filters to partition the matrices into blocks
- * (starpu_data_partition and starpu_data_map_filters)
- * - how to unpartition data (starpu_data_unpartition) and how to stop
- * monitoring data (starpu_data_unregister)
- * - how to manipulate subsets of data (starpu_data_get_sub_data)
- * - how to construct an autocalibrated performance model (starpu_perfmodel)
- * - how to submit asynchronous tasks
- */
- #include <string.h>
- #include <math.h>
- #include <sys/types.h>
- #include <sys/time.h>
- #include <pthread.h>
- #include <signal.h>
- #include <starpu.h>
- static float *A, *B, *C;
- static starpu_data_handle_t A_handle, B_handle, C_handle;
- static unsigned nslicesx = 4;
- static unsigned nslicesy = 4;
- static unsigned xdim = 1024;
- static unsigned ydim = 1024;
- static unsigned zdim = 512;
- /*
- * That program should compute C = A * B
- *
- * A of size (z,y)
- * B of size (x,z)
- * C of size (x,y)
- |---------------|
- z | B |
- |---------------|
- z x
- |----| |---------------|
- | | | |
- | | | |
- | A | y | C |
- | | | |
- | | | |
- |----| |---------------|
- */
- /*
- * The codelet is passed 3 matrices, the "descr" union-type field gives a
- * description of the layout of those 3 matrices in the local memory (ie. RAM
- * in the case of CPU, GPU frame buffer in the case of GPU etc.). Since we have
- * registered data with the "matrix" data interface, we use the matrix macros.
- */
- static void cpu_mult(void *descr[], __attribute__((unused)) void *arg)
- {
- float *subA, *subB, *subC;
- uint32_t nxC, nyC, nyA;
- uint32_t ldA, ldB, ldC;
- /* .blas.ptr gives a pointer to the first element of the local copy */
- subA = (float *)STARPU_MATRIX_GET_PTR(descr[0]);
- subB = (float *)STARPU_MATRIX_GET_PTR(descr[1]);
- subC = (float *)STARPU_MATRIX_GET_PTR(descr[2]);
- /* .blas.nx is the number of rows (consecutive elements) and .blas.ny
- * is the number of lines that are separated by .blas.ld elements (ld
- * stands for leading dimension).
- * NB: in case some filters were used, the leading dimension is not
- * guaranteed to be the same in main memory (on the original matrix)
- * and on the accelerator! */
- nxC = STARPU_MATRIX_GET_NX(descr[2]);
- nyC = STARPU_MATRIX_GET_NY(descr[2]);
- nyA = STARPU_MATRIX_GET_NY(descr[0]);
- ldA = STARPU_MATRIX_GET_LD(descr[0]);
- ldB = STARPU_MATRIX_GET_LD(descr[1]);
- ldC = STARPU_MATRIX_GET_LD(descr[2]);
- /* we assume a FORTRAN-ordering! */
- unsigned i,j,k;
- for (i = 0; i < nyC; i++)
- {
- for (j = 0; j < nxC; j++)
- {
- float sum = 0.0;
- for (k = 0; k < nyA; k++)
- {
- sum += subA[j+k*ldA]*subB[k+i*ldB];
- }
- subC[j + i*ldC] = sum;
- }
- }
- }
- static void init_problem_data(void)
- {
- unsigned i,j;
- /* we initialize matrices A, B and C in the usual way */
- A = (float *) malloc(zdim*ydim*sizeof(float));
- B = (float *) malloc(xdim*zdim*sizeof(float));
- C = (float *) malloc(xdim*ydim*sizeof(float));
- /* fill the A and B matrices */
- srand(2009);
- for (j=0; j < ydim; j++)
- {
- for (i=0; i < zdim; i++)
- {
- A[j+i*ydim] = (float)(starpu_drand48());
- }
- }
- for (j=0; j < zdim; j++)
- {
- for (i=0; i < xdim; i++)
- {
- B[j+i*zdim] = (float)(starpu_drand48());
- }
- }
- for (j=0; j < ydim; j++)
- {
- for (i=0; i < xdim; i++)
- {
- C[j+i*ydim] = (float)(0);
- }
- }
- }
- static void partition_mult_data(void)
- {
- /* note that we assume a FORTRAN ordering here! */
- /* The BLAS data interface is described by 4 parameters:
- * - the location of the first element of the matrix to monitor (3rd
- * argument)
- * - the number of elements between columns, aka leading dimension
- * (4th arg)
- * - the number of (contiguous) elements per column, ie. contiguous
- * elements (5th arg)
- * - the number of columns (6th arg)
- * The first elements is a pointer to the data_handle that will be
- * associated to the matrix, and the second elements gives the memory
- * node in which resides the matrix: 0 means that the 3rd argument is
- * an adress in main memory.
- */
- starpu_matrix_data_register(&A_handle, 0, (uintptr_t)A,
- ydim, ydim, zdim, sizeof(float));
- starpu_matrix_data_register(&B_handle, 0, (uintptr_t)B,
- zdim, zdim, xdim, sizeof(float));
- starpu_matrix_data_register(&C_handle, 0, (uintptr_t)C,
- ydim, ydim, xdim, sizeof(float));
- /* A filter is a method to partition a data into disjoint chunks, it is
- * described by the means of the "struct starpu_data_filter" structure that
- * contains a function that is applied on a data handle to partition it
- * into smaller chunks, and an argument that is passed to the function
- * (eg. the number of blocks to create here).
- */
- /* StarPU supplies some basic filters such as the partition of a matrix
- * into blocks, note that we are using a FORTRAN ordering so that the
- * name of the filters are a bit misleading */
- struct starpu_data_filter vert =
- {
- .filter_func = starpu_vertical_block_filter_func,
- .nchildren = nslicesx
- };
- struct starpu_data_filter horiz =
- {
- .filter_func = starpu_block_filter_func,
- .nchildren = nslicesy
- };
- /*
- * Illustration with nslicex = 4 and nslicey = 2, it is possible to access
- * sub-data by using the "starpu_data_get_sub_data" method, which takes a data handle,
- * the number of filters to apply, and the indexes for each filters, for
- * instance:
- *
- * A' handle is starpu_data_get_sub_data(A_handle, 1, 1);
- * B' handle is starpu_data_get_sub_data(B_handle, 1, 2);
- * C' handle is starpu_data_get_sub_data(C_handle, 2, 2, 1);
- *
- * Note that here we applied 2 filters recursively onto C.
- *
- * "starpu_data_get_sub_data(C_handle, 1, 3)" would return a handle to the 4th column
- * of blocked matrix C for example.
- *
- * |---|---|---|---|
- * | | | B'| | B
- * |---|---|---|---|
- * 0 1 2 3
- * |----| |---|---|---|---|
- * | | | | | | |
- * | | 0 | | | | |
- * |----| |---|---|---|---|
- * | A' | | | | C'| |
- * | | | | | | |
- * |----| |---|---|---|---|
- * A C
- *
- * IMPORTANT: applying filters is equivalent to partitionning a piece of
- * data in a hierarchical manner, so that memory consistency is enforced
- * for each of the elements independantly. The tasks should therefore NOT
- * access inner nodes (eg. one column of C or the whole C) but only the
- * leafs of the tree (ie. blocks here). Manipulating inner nodes is only
- * possible by disapplying the filters (using starpu_data_unpartition), to
- * enforce memory consistency.
- */
- starpu_data_partition(B_handle, &vert);
- starpu_data_partition(A_handle, &horiz);
- /* starpu_data_map_filters is a variable-arity function, the first argument
- * is the handle of the data to partition, the second argument is the
- * number of filters to apply recursively. Filters are applied in the
- * same order as the arguments.
- * This would be equivalent to starpu_data_partition(C_handle, &vert) and
- * then applying horiz on each sub-data (ie. each column of C)
- */
- starpu_data_map_filters(C_handle, 2, &vert, &horiz);
- }
- static struct starpu_perfmodel mult_perf_model =
- {
- .type = STARPU_HISTORY_BASED,
- .symbol = "mult_perf_model"
- };
- static struct starpu_codelet cl =
- {
- /* we can only execute that kernel on a CPU yet */
- .where = STARPU_CPU,
- /* CPU implementation of the codelet */
- .cpu_funcs = {cpu_mult, NULL},
- /* the codelet manipulates 3 buffers that are managed by the
- * DSM */
- .nbuffers = 3,
- .modes = {STARPU_R, STARPU_R, STARPU_W},
- /* in case the scheduling policy may use performance models */
- .model = &mult_perf_model
- };
- static int launch_tasks(void)
- {
- int ret;
- /* partition the work into slices */
- unsigned taskx, tasky;
- for (taskx = 0; taskx < nslicesx; taskx++)
- {
- for (tasky = 0; tasky < nslicesy; tasky++)
- {
- /* C[taskx, tasky] = A[tasky] B[taskx] */
- /* by default, starpu_task_create() returns an
- * asynchronous task (ie. task->synchronous = 0) */
- struct starpu_task *task = starpu_task_create();
- /* this task implements codelet "cl" */
- task->cl = &cl;
- /*
- * |---|---|---|---|
- * | | * | | | B
- * |---|---|---|---|
- * X
- * |----| |---|---|---|---|
- * |****| Y | |***| | |
- * |****| | |***| | |
- * |----| |---|---|---|---|
- * | | | | | | |
- * | | | | | | |
- * |----| |---|---|---|---|
- * A C
- */
- /* there was a single filter applied to matrices A
- * (respectively B) so we grab the handle to the chunk
- * identified by "tasky" (respectively "taskx). The "1"
- * tells StarPU that there is a single argument to the
- * variable-arity function starpu_data_get_sub_data */
- task->handles[0] = starpu_data_get_sub_data(A_handle, 1, tasky);
- task->handles[1] = starpu_data_get_sub_data(B_handle, 1, taskx);
- /* 2 filters were applied on matrix C, so we give
- * starpu_data_get_sub_data 2 arguments. The order of the arguments
- * must match the order in which the filters were
- * applied.
- * NB: starpu_data_get_sub_data(C_handle, 1, k) would have returned
- * a handle to the column number k of matrix C.
- * NB2: starpu_data_get_sub_data(C_handle, 2, taskx, tasky) is
- * equivalent to
- * starpu_data_get_sub_data(starpu_data_get_sub_data(C_handle, 1, taskx), 1, tasky)*/
- task->handles[2] = starpu_data_get_sub_data(C_handle, 2, taskx, tasky);
- /* this is not a blocking call since task->synchronous = 0 */
- ret = starpu_task_submit(task);
- if (ret == -ENODEV) return ret;
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_submit");
- }
- }
- return 0;
- }
- int main(__attribute__ ((unused)) int argc,
- __attribute__ ((unused)) char **argv)
- {
- int ret;
- /* start the runtime */
- ret = starpu_init(NULL);
- if (ret == -ENODEV)
- return 77;
- STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
- /* initialize matrices A, B and C and register them to StarPU */
- init_problem_data();
- /* partition matrices into blocks that can be manipulated by the
- * codelets */
- partition_mult_data();
- /* submit all tasks in an asynchronous fashion */
- ret = launch_tasks();
- if (ret == -ENODEV) goto enodev;
- /* wait for termination */
- starpu_task_wait_for_all();
- /* remove the filters applied by the means of starpu_data_map_filters; now
- * it's not possible to manipulate a subset of C using starpu_data_get_sub_data until
- * starpu_data_map_filters is called again on C_handle.
- * The second argument is the memory node where the different subsets
- * should be reassembled, 0 = main memory (RAM) */
- starpu_data_unpartition(A_handle, 0);
- starpu_data_unpartition(B_handle, 0);
- starpu_data_unpartition(C_handle, 0);
- /* stop monitoring matrix C : after this, it is not possible to pass C
- * (or any subset of C) as a codelet input/output. This also implements
- * a barrier so that the piece of data is put back into main memory in
- * case it was only available on a GPU for instance. */
- starpu_data_unregister(A_handle);
- starpu_data_unregister(B_handle);
- starpu_data_unregister(C_handle);
- free(A);
- free(B);
- free(C);
- starpu_shutdown();
- return 0;
- enodev:
- starpu_shutdown();
- return 77;
- }
|