porting work to Maxeler DFE

Cédric Augonnet 8bd7ca5765 - dynamic code loading requires libelf преди 16 години
build-aux fc22dad676 create a trunk/, branches/ and a tags/ directory преди 17 години
doc 375fc13473 typo in the doc преди 16 години
examples ffe92a8345 fix warnings преди 16 години
include 3a7f234dd1 todo преди 16 години
scripts fc22dad676 create a trunk/, branches/ and a tags/ directory преди 17 години
src a259852f5e remove --coverage's output when cleaning up преди 16 години
tests 75149a22e5 partially revert previous commit преди 16 години
tools a259852f5e remove --coverage's output when cleaning up преди 16 години
AUTHORS fc22dad676 create a trunk/, branches/ and a tags/ directory преди 17 години
COPYING.LGPL fc22dad676 create a trunk/, branches/ and a tags/ directory преди 17 години
Makefile.am e2b6034f4f add some texinfo doc skeleton преди 16 години
README afbeddc8b3 proofread преди 16 години
acinclude.m4 446f18f835 test if __sync_* GCC built-in are available преди 17 години
configure.ac 8bd7ca5765 - dynamic code loading requires libelf преди 16 години
libstarpu.pc.in fc22dad676 create a trunk/, branches/ and a tags/ directory преди 17 години

README

++=================++
|| I. Introduction ||
++=================++

+----------------------
| I.a. What is StarPU ?

StarPU is a runtime system that offers support for heterogeneous multicore
machines. While many efforts are devoted to design efficient computation kernels
for those architectures (eg. to implement BLAS kernels on GPUs or on Cell's
SPUs), StarPU not only takes care of offloading such kernels (and implementing
data coherency accross the machine), but it also makes sure the kernels are
executed as efficiently as possible.

+------------------------
| I.b. What StarPU is not

StarPU is not a new langage, and it does not extends existing langages either.
StarPU does not help to write computation kernels.

+---------------------------------
| I.c. (How) Could StarPU help me?

While StarPU will not make it easier to write computation kernels, it does
simplify their actual offloading as StarPU handle most low level aspects
transparently.

Obviously, it is crucial to have efficient kernels, but it must be noted that
the way those kernels are mapped and scheduled onto the computational resources
also affect the overall performance to a great extent.

StarPU is especially helpful when considering multiple heterogeneous processing
resources: statically mapping and synchronizing tasks in such a heterogeneous
environment is already very difficult, making it in a portable way is virtually
impossible. On the other hand, the scheduling capabilities of StarPU makes it
possible to easily exploit all processors at the same time while taking
advantage of their specificities in a portable fashion.

++==================++
|| II. Requirements ||
++==================++

* make
* gcc (version >= 4.1)
* if CUDA support is enabled
* CUDA (version >= 2.0)
* CUBLAS (version >= 2.0)
* extra requirements for the svn version
* autoconf (version >= 2.60)
* automake

++=====================++
|| III. Getting StarPU ||
++=====================++

StarPU is available on https://gforge.inria.fr/projects/starpu/.

It is also possible to access the latest svn version:
$ svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk/
or via http (DAV):
$ svn checkout https://scm.gforge.inria.fr/svn/starpu/trunk/

++=============================++
|| IV. Building and Installing ||
++=============================++

+---------------------------
| IV.a. For svn version only

$ autoreconf

+------------------------
| IV.b. For all versions:

$ ./configure
$ make
$ make install

++============++
|| V. Contact ||
++============++

For any questions regarding StarPU, please contact Cédric Augonnet
(cedric.augonnet@inria.fr).