123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- import Libdl
- using StarPU
- using LinearAlgebra
- @target STARPU_CPU+STARPU_CUDA
- @codelet function matrix_mult(m1 :: Matrix{Float32}, m2 :: Matrix{Float32}, m3 :: Matrix{Float32}, stride ::Int32) :: Nothing
- width_m2 :: Int32 = width(m2)
- height_m1 :: Int32 = height(m1)
- width_m1 :: Int32 = width(m1)
- # Naive version
- @parallel for j in (1 : width_m2)
- @parallel for i in (1 : height_m1)
-
- sum :: Float32 = 0.
- for k in (1 : width_m1)
- sum = sum + m1[i, k] * m2[k, j]
- end
-
- m3[i, j] = sum
- end
- end
- # ##### Tiled and unrolled version
- # for l in (1 : width_m2)
- # for m in (1 : height_m1)
- # m3[m,l] = 0
- # end
- # end
- # @parallel for i in (1 : STRIDE : height_m1)
- # for k in (1 : STRIDE : width_m1 )
- # for j in (1 : STRIDE : width_m2 )
- # for kk in (k : 4 : k+STRIDE-1)
- # for jj in (j : 2 : j+STRIDE-1)
- # alpha00 :: Float32 =m2[kk,jj]
- # alpha01 :: Float32 =m2[kk,jj+1]
- # alpha10 :: Float32 =m2[kk+1,jj]
- # alpha11 :: Float32 =m2[kk+1,jj+1]
- # alpha20 :: Float32 =m2[kk+2,jj]
- # alpha21 :: Float32 =m2[kk+2,jj+1]
- # alpha30 :: Float32 =m2[kk+3,jj]
- # alpha31 :: Float32 =m2[kk+3,jj+1]
- # for ii in (i : 1 : i+STRIDE-1)
- # m3[ii, jj] = m3[ii, jj] + m1[ii, kk] * alpha00 + m1[ii, kk+1] * alpha10 + m1[ii, kk+2] * alpha20 + m1[ii,kk+3]*alpha30
- # m3[ii, jj+1] = m3[ii, jj+1] + m1[ii, kk] * alpha01 + m1[ii, kk+1] * alpha11 + m1[ii, kk+2]*alpha21 + m1[ii,kk+3]*alpha31
- # end
- # end
- # end
- # end
- # end
- # end
- return
- end
- starpu_init()
- function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy, stride)
- scale= 3
- tmin=0
- vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)
- horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)
- @starpu_block let
- hA,hB,hC = starpu_data_register(A, B, C)
- starpu_data_partition(hB, vert)
- starpu_data_partition(hA, horiz)
- starpu_data_map_filters(hC, vert, horiz)
- tmin=0
- perfmodel = StarpuPerfmodel(
- perf_type = STARPU_HISTORY_BASED,
- symbol = "history_perf"
- )
- cl = StarpuCodelet(
- cpu_func = CPU_CODELETS["matrix_mult"],
- # cuda_func = CUDA_CODELETS["matrix_mult"],
- #opencl_func="ocl_matrix_mult",
- modes = [STARPU_R, STARPU_R, STARPU_W],
- perfmodel = perfmodel
- )
- for i in (1 : 10 )
- t=time_ns()
- @starpu_sync_tasks begin
- for taskx in (1 : nslicesx)
- for tasky in (1 : nslicesy)
- handles = [hA[tasky], hB[taskx], hC[taskx, tasky]]
- task = StarpuTask(cl = cl, handles = handles, cl_arg=(Int32(stride),))
- starpu_task_submit(task)
- #@starpu_async_cl matrix_mult(hA[tasky], hB[taskx], hC[taskx, tasky])
- end
- end
- end
- t=time_ns()-t
- if (tmin==0 || tmin>t)
- tmin=t
- end
- end
- end
- return tmin
- end
- function approximately_equals(
- A :: Matrix{Cfloat},
- B :: Matrix{Cfloat},
- eps = 1e-2
- )
- (height, width) = size(A)
- for j in (1 : width)
- for i in (1 : height)
- if (abs(A[i,j] - B[i,j]) > eps * max(abs(B[i,j]), abs(A[i,j])))
- println("A[$i,$j] : $(A[i,j]), B[$i,$j] : $(B[i,j])")
- return false
- end
- end
- end
- return true
- end
- function compute_times(io,start_dim, step_dim, stop_dim, nslicesx, nslicesy, stride)
- for dim in (start_dim : step_dim : stop_dim)
- A = Array(rand(Cfloat, dim, dim))
- B = Array(rand(Cfloat, dim, dim))
- C = zeros(Float32, dim, dim)
- mt = multiply_with_starpu(A, B, C, nslicesx, nslicesy, stride)
- flops = (2*dim-1)*dim*dim/mt
- size=dim*dim*4*3/1024/1024
- println(io,"$size $flops")
- println("$size $flops")
- end
- end
- if size(ARGS, 1) < 2
- stride=4
- filename="x.dat"
- else
- stride=parse(Int, ARGS[1])
- filename=ARGS[2]
- end
- io=open(filename,"w")
- compute_times(io,16*stride,4*stride,128*stride,2,2,stride)
- close(io)
- starpu_shutdown()
|