mult.jl 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. import Libdl
  2. using StarPU
  3. using LinearAlgebra
  4. @target STARPU_CPU+STARPU_CUDA
  5. @codelet function matrix_mult(m1 :: Matrix{Float32}, m2 :: Matrix{Float32}, m3 :: Matrix{Float32}, stride ::Int32) :: Nothing
  6. width_m2 :: Int32 = width(m2)
  7. height_m1 :: Int32 = height(m1)
  8. width_m1 :: Int32 = width(m1)
  9. # Naive version
  10. @parallel for j in (1 : width_m2)
  11. @parallel for i in (1 : height_m1)
  12. sum :: Float32 = 0.
  13. for k in (1 : width_m1)
  14. sum = sum + m1[i, k] * m2[k, j]
  15. end
  16. m3[i, j] = sum
  17. end
  18. end
  19. # ##### Tiled and unrolled version
  20. # for l in (1 : width_m2)
  21. # for m in (1 : height_m1)
  22. # m3[m,l] = 0
  23. # end
  24. # end
  25. # @parallel for i in (1 : STRIDE : height_m1)
  26. # for k in (1 : STRIDE : width_m1 )
  27. # for j in (1 : STRIDE : width_m2 )
  28. # for kk in (k : 4 : k+STRIDE-1)
  29. # for jj in (j : 2 : j+STRIDE-1)
  30. # alpha00 :: Float32 =m2[kk,jj]
  31. # alpha01 :: Float32 =m2[kk,jj+1]
  32. # alpha10 :: Float32 =m2[kk+1,jj]
  33. # alpha11 :: Float32 =m2[kk+1,jj+1]
  34. # alpha20 :: Float32 =m2[kk+2,jj]
  35. # alpha21 :: Float32 =m2[kk+2,jj+1]
  36. # alpha30 :: Float32 =m2[kk+3,jj]
  37. # alpha31 :: Float32 =m2[kk+3,jj+1]
  38. # for ii in (i : 1 : i+STRIDE-1)
  39. # m3[ii, jj] = m3[ii, jj] + m1[ii, kk] * alpha00 + m1[ii, kk+1] * alpha10 + m1[ii, kk+2] * alpha20 + m1[ii,kk+3]*alpha30
  40. # m3[ii, jj+1] = m3[ii, jj+1] + m1[ii, kk] * alpha01 + m1[ii, kk+1] * alpha11 + m1[ii, kk+2]*alpha21 + m1[ii,kk+3]*alpha31
  41. # end
  42. # end
  43. # end
  44. # end
  45. # end
  46. # end
  47. return
  48. end
  49. starpu_init()
  50. function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy, stride)
  51. scale= 3
  52. tmin=0
  53. vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx)
  54. horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy)
  55. @starpu_block let
  56. hA,hB,hC = starpu_data_register(A, B, C)
  57. starpu_data_partition(hB, vert)
  58. starpu_data_partition(hA, horiz)
  59. starpu_data_map_filters(hC, vert, horiz)
  60. tmin=0
  61. perfmodel = StarpuPerfmodel(
  62. perf_type = STARPU_HISTORY_BASED,
  63. symbol = "history_perf"
  64. )
  65. cl = StarpuCodelet(
  66. cpu_func = CPU_CODELETS["matrix_mult"],
  67. # cuda_func = CUDA_CODELETS["matrix_mult"],
  68. #opencl_func="ocl_matrix_mult",
  69. modes = [STARPU_R, STARPU_R, STARPU_W],
  70. perfmodel = perfmodel
  71. )
  72. for i in (1 : 10 )
  73. t=time_ns()
  74. @starpu_sync_tasks begin
  75. for taskx in (1 : nslicesx)
  76. for tasky in (1 : nslicesy)
  77. handles = [hA[tasky], hB[taskx], hC[taskx, tasky]]
  78. task = StarpuTask(cl = cl, handles = handles, cl_arg=(Int32(stride),))
  79. starpu_task_submit(task)
  80. #@starpu_async_cl matrix_mult(hA[tasky], hB[taskx], hC[taskx, tasky])
  81. end
  82. end
  83. end
  84. t=time_ns()-t
  85. if (tmin==0 || tmin>t)
  86. tmin=t
  87. end
  88. end
  89. end
  90. return tmin
  91. end
  92. function approximately_equals(
  93. A :: Matrix{Cfloat},
  94. B :: Matrix{Cfloat},
  95. eps = 1e-2
  96. )
  97. (height, width) = size(A)
  98. for j in (1 : width)
  99. for i in (1 : height)
  100. if (abs(A[i,j] - B[i,j]) > eps * max(abs(B[i,j]), abs(A[i,j])))
  101. println("A[$i,$j] : $(A[i,j]), B[$i,$j] : $(B[i,j])")
  102. return false
  103. end
  104. end
  105. end
  106. return true
  107. end
  108. function compute_times(io,start_dim, step_dim, stop_dim, nslicesx, nslicesy, stride)
  109. for dim in (start_dim : step_dim : stop_dim)
  110. A = Array(rand(Cfloat, dim, dim))
  111. B = Array(rand(Cfloat, dim, dim))
  112. C = zeros(Float32, dim, dim)
  113. mt = multiply_with_starpu(A, B, C, nslicesx, nslicesy, stride)
  114. flops = (2*dim-1)*dim*dim/mt
  115. size=dim*dim*4*3/1024/1024
  116. println(io,"$size $flops")
  117. println("$size $flops")
  118. end
  119. end
  120. if size(ARGS, 1) < 2
  121. stride=4
  122. filename="x.dat"
  123. else
  124. stride=parse(Int, ARGS[1])
  125. filename=ARGS[2]
  126. end
  127. io=open(filename,"w")
  128. compute_times(io,16*stride,4*stride,128*stride,2,2,stride)
  129. close(io)
  130. starpu_shutdown()