import Libdl using StarPU using LinearAlgebra @target STARPU_CPU+STARPU_CUDA @codelet function matrix_mult(m1 :: Matrix{Float32}, m2 :: Matrix{Float32}, m3 :: Matrix{Float32}, stride ::Int32) :: Nothing width_m2 :: Int32 = width(m2) height_m1 :: Int32 = height(m1) width_m1 :: Int32 = width(m1) # Naive version @parallel for j in (1 : width_m2) @parallel for i in (1 : height_m1) sum :: Float32 = 0. for k in (1 : width_m1) sum = sum + m1[i, k] * m2[k, j] end m3[i, j] = sum end end # ##### Tiled and unrolled version # for l in (1 : width_m2) # for m in (1 : height_m1) # m3[m,l] = 0 # end # end # @parallel for i in (1 : STRIDE : height_m1) # for k in (1 : STRIDE : width_m1 ) # for j in (1 : STRIDE : width_m2 ) # for kk in (k : 4 : k+STRIDE-1) # for jj in (j : 2 : j+STRIDE-1) # alpha00 :: Float32 =m2[kk,jj] # alpha01 :: Float32 =m2[kk,jj+1] # alpha10 :: Float32 =m2[kk+1,jj] # alpha11 :: Float32 =m2[kk+1,jj+1] # alpha20 :: Float32 =m2[kk+2,jj] # alpha21 :: Float32 =m2[kk+2,jj+1] # alpha30 :: Float32 =m2[kk+3,jj] # alpha31 :: Float32 =m2[kk+3,jj+1] # for ii in (i : 1 : i+STRIDE-1) # m3[ii, jj] = m3[ii, jj] + m1[ii, kk] * alpha00 + m1[ii, kk+1] * alpha10 + m1[ii, kk+2] * alpha20 + m1[ii,kk+3]*alpha30 # m3[ii, jj+1] = m3[ii, jj+1] + m1[ii, kk] * alpha01 + m1[ii, kk+1] * alpha11 + m1[ii, kk+2]*alpha21 + m1[ii,kk+3]*alpha31 # end # end # end # end # end # end return end starpu_init() function multiply_with_starpu(A :: Matrix{Float32}, B :: Matrix{Float32}, C :: Matrix{Float32}, nslicesx, nslicesy, stride) scale= 3 tmin=0 vert = StarpuDataFilter(STARPU_MATRIX_FILTER_VERTICAL_BLOCK, nslicesx) horiz = StarpuDataFilter(STARPU_MATRIX_FILTER_BLOCK, nslicesy) @starpu_block let hA,hB,hC = starpu_data_register(A, B, C) starpu_data_partition(hB, vert) starpu_data_partition(hA, horiz) starpu_data_map_filters(hC, vert, horiz) tmin=0 perfmodel = StarpuPerfmodel( perf_type = STARPU_HISTORY_BASED, symbol = "history_perf" ) cl = StarpuCodelet( cpu_func = CPU_CODELETS["matrix_mult"], # cuda_func = CUDA_CODELETS["matrix_mult"], #opencl_func="ocl_matrix_mult", modes = [STARPU_R, STARPU_R, STARPU_W], perfmodel = perfmodel ) for i in (1 : 10 ) t=time_ns() @starpu_sync_tasks begin for taskx in (1 : nslicesx) for tasky in (1 : nslicesy) handles = [hA[tasky], hB[taskx], hC[taskx, tasky]] task = StarpuTask(cl = cl, handles = handles, cl_arg=(Int32(stride),)) starpu_task_submit(task) #@starpu_async_cl matrix_mult(hA[tasky], hB[taskx], hC[taskx, tasky]) end end end t=time_ns()-t if (tmin==0 || tmin>t) tmin=t end end end return tmin end function approximately_equals( A :: Matrix{Cfloat}, B :: Matrix{Cfloat}, eps = 1e-2 ) (height, width) = size(A) for j in (1 : width) for i in (1 : height) if (abs(A[i,j] - B[i,j]) > eps * max(abs(B[i,j]), abs(A[i,j]))) println("A[$i,$j] : $(A[i,j]), B[$i,$j] : $(B[i,j])") return false end end end return true end function compute_times(io,start_dim, step_dim, stop_dim, nslicesx, nslicesy, stride) for dim in (start_dim : step_dim : stop_dim) A = Array(rand(Cfloat, dim, dim)) B = Array(rand(Cfloat, dim, dim)) C = zeros(Float32, dim, dim) mt = multiply_with_starpu(A, B, C, nslicesx, nslicesy, stride) flops = (2*dim-1)*dim*dim/mt size=dim*dim*4*3/1024/1024 println(io,"$size $flops") println("$size $flops") end end if size(ARGS, 1) < 2 stride=4 filename="x.dat" else stride=parse(Int, ARGS[1]) filename=ARGS[2] end io=open(filename,"w") compute_times(io,16*stride,4*stride,128*stride,2,2,stride) close(io) starpu_shutdown()