sig0.go 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220
  1. package dns
  2. import (
  3. "crypto"
  4. "crypto/dsa"
  5. "crypto/ecdsa"
  6. "crypto/rsa"
  7. "encoding/binary"
  8. "math/big"
  9. "strings"
  10. "time"
  11. )
  12. // Sign signs a dns.Msg. It fills the signature with the appropriate data.
  13. // The SIG record should have the SignerName, KeyTag, Algorithm, Inception
  14. // and Expiration set.
  15. func (rr *SIG) Sign(k crypto.Signer, m *Msg) ([]byte, error) {
  16. if k == nil {
  17. return nil, ErrPrivKey
  18. }
  19. if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
  20. return nil, ErrKey
  21. }
  22. rr.Header().Rrtype = TypeSIG
  23. rr.Header().Class = ClassANY
  24. rr.Header().Ttl = 0
  25. rr.Header().Name = "."
  26. rr.OrigTtl = 0
  27. rr.TypeCovered = 0
  28. rr.Labels = 0
  29. buf := make([]byte, m.Len()+rr.len())
  30. mbuf, err := m.PackBuffer(buf)
  31. if err != nil {
  32. return nil, err
  33. }
  34. if &buf[0] != &mbuf[0] {
  35. return nil, ErrBuf
  36. }
  37. off, err := PackRR(rr, buf, len(mbuf), nil, false)
  38. if err != nil {
  39. return nil, err
  40. }
  41. buf = buf[:off:cap(buf)]
  42. hash, ok := AlgorithmToHash[rr.Algorithm]
  43. if !ok {
  44. return nil, ErrAlg
  45. }
  46. hasher := hash.New()
  47. // Write SIG rdata
  48. hasher.Write(buf[len(mbuf)+1+2+2+4+2:])
  49. // Write message
  50. hasher.Write(buf[:len(mbuf)])
  51. signature, err := sign(k, hasher.Sum(nil), hash, rr.Algorithm)
  52. if err != nil {
  53. return nil, err
  54. }
  55. rr.Signature = toBase64(signature)
  56. sig := string(signature)
  57. buf = append(buf, sig...)
  58. if len(buf) > int(^uint16(0)) {
  59. return nil, ErrBuf
  60. }
  61. // Adjust sig data length
  62. rdoff := len(mbuf) + 1 + 2 + 2 + 4
  63. rdlen := binary.BigEndian.Uint16(buf[rdoff:])
  64. rdlen += uint16(len(sig))
  65. binary.BigEndian.PutUint16(buf[rdoff:], rdlen)
  66. // Adjust additional count
  67. adc := binary.BigEndian.Uint16(buf[10:])
  68. adc++
  69. binary.BigEndian.PutUint16(buf[10:], adc)
  70. return buf, nil
  71. }
  72. // Verify validates the message buf using the key k.
  73. // It's assumed that buf is a valid message from which rr was unpacked.
  74. func (rr *SIG) Verify(k *KEY, buf []byte) error {
  75. if k == nil {
  76. return ErrKey
  77. }
  78. if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
  79. return ErrKey
  80. }
  81. var hash crypto.Hash
  82. switch rr.Algorithm {
  83. case DSA, RSASHA1:
  84. hash = crypto.SHA1
  85. case RSASHA256, ECDSAP256SHA256:
  86. hash = crypto.SHA256
  87. case ECDSAP384SHA384:
  88. hash = crypto.SHA384
  89. case RSASHA512:
  90. hash = crypto.SHA512
  91. default:
  92. return ErrAlg
  93. }
  94. hasher := hash.New()
  95. buflen := len(buf)
  96. qdc := binary.BigEndian.Uint16(buf[4:])
  97. anc := binary.BigEndian.Uint16(buf[6:])
  98. auc := binary.BigEndian.Uint16(buf[8:])
  99. adc := binary.BigEndian.Uint16(buf[10:])
  100. offset := 12
  101. var err error
  102. for i := uint16(0); i < qdc && offset < buflen; i++ {
  103. _, offset, err = UnpackDomainName(buf, offset)
  104. if err != nil {
  105. return err
  106. }
  107. // Skip past Type and Class
  108. offset += 2 + 2
  109. }
  110. for i := uint16(1); i < anc+auc+adc && offset < buflen; i++ {
  111. _, offset, err = UnpackDomainName(buf, offset)
  112. if err != nil {
  113. return err
  114. }
  115. // Skip past Type, Class and TTL
  116. offset += 2 + 2 + 4
  117. if offset+1 >= buflen {
  118. continue
  119. }
  120. var rdlen uint16
  121. rdlen = binary.BigEndian.Uint16(buf[offset:])
  122. offset += 2
  123. offset += int(rdlen)
  124. }
  125. if offset >= buflen {
  126. return &Error{err: "overflowing unpacking signed message"}
  127. }
  128. // offset should be just prior to SIG
  129. bodyend := offset
  130. // owner name SHOULD be root
  131. _, offset, err = UnpackDomainName(buf, offset)
  132. if err != nil {
  133. return err
  134. }
  135. // Skip Type, Class, TTL, RDLen
  136. offset += 2 + 2 + 4 + 2
  137. sigstart := offset
  138. // Skip Type Covered, Algorithm, Labels, Original TTL
  139. offset += 2 + 1 + 1 + 4
  140. if offset+4+4 >= buflen {
  141. return &Error{err: "overflow unpacking signed message"}
  142. }
  143. expire := binary.BigEndian.Uint32(buf[offset:])
  144. offset += 4
  145. incept := binary.BigEndian.Uint32(buf[offset:])
  146. offset += 4
  147. now := uint32(time.Now().Unix())
  148. if now < incept || now > expire {
  149. return ErrTime
  150. }
  151. // Skip key tag
  152. offset += 2
  153. var signername string
  154. signername, offset, err = UnpackDomainName(buf, offset)
  155. if err != nil {
  156. return err
  157. }
  158. // If key has come from the DNS name compression might
  159. // have mangled the case of the name
  160. if strings.ToLower(signername) != strings.ToLower(k.Header().Name) {
  161. return &Error{err: "signer name doesn't match key name"}
  162. }
  163. sigend := offset
  164. hasher.Write(buf[sigstart:sigend])
  165. hasher.Write(buf[:10])
  166. hasher.Write([]byte{
  167. byte((adc - 1) << 8),
  168. byte(adc - 1),
  169. })
  170. hasher.Write(buf[12:bodyend])
  171. hashed := hasher.Sum(nil)
  172. sig := buf[sigend:]
  173. switch k.Algorithm {
  174. case DSA:
  175. pk := k.publicKeyDSA()
  176. sig = sig[1:]
  177. r := big.NewInt(0)
  178. r.SetBytes(sig[:len(sig)/2])
  179. s := big.NewInt(0)
  180. s.SetBytes(sig[len(sig)/2:])
  181. if pk != nil {
  182. if dsa.Verify(pk, hashed, r, s) {
  183. return nil
  184. }
  185. return ErrSig
  186. }
  187. case RSASHA1, RSASHA256, RSASHA512:
  188. pk := k.publicKeyRSA()
  189. if pk != nil {
  190. return rsa.VerifyPKCS1v15(pk, hash, hashed, sig)
  191. }
  192. case ECDSAP256SHA256, ECDSAP384SHA384:
  193. pk := k.publicKeyECDSA()
  194. r := big.NewInt(0)
  195. r.SetBytes(sig[:len(sig)/2])
  196. s := big.NewInt(0)
  197. s.SetBytes(sig[len(sig)/2:])
  198. if pk != nil {
  199. if ecdsa.Verify(pk, hashed, r, s) {
  200. return nil
  201. }
  202. return ErrSig
  203. }
  204. }
  205. return ErrKeyAlg
  206. }