sig0.go 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214
  1. package dns
  2. import (
  3. "crypto"
  4. "crypto/dsa"
  5. "crypto/ecdsa"
  6. "crypto/rsa"
  7. "encoding/binary"
  8. "math/big"
  9. "strings"
  10. "time"
  11. )
  12. // Sign signs a dns.Msg. It fills the signature with the appropriate data.
  13. // The SIG record should have the SignerName, KeyTag, Algorithm, Inception
  14. // and Expiration set.
  15. func (rr *SIG) Sign(k crypto.Signer, m *Msg) ([]byte, error) {
  16. if k == nil {
  17. return nil, ErrPrivKey
  18. }
  19. if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
  20. return nil, ErrKey
  21. }
  22. rr.Hdr = RR_Header{Name: ".", Rrtype: TypeSIG, Class: ClassANY, Ttl: 0}
  23. rr.OrigTtl, rr.TypeCovered, rr.Labels = 0, 0, 0
  24. buf := make([]byte, m.Len()+Len(rr))
  25. mbuf, err := m.PackBuffer(buf)
  26. if err != nil {
  27. return nil, err
  28. }
  29. if &buf[0] != &mbuf[0] {
  30. return nil, ErrBuf
  31. }
  32. off, err := PackRR(rr, buf, len(mbuf), nil, false)
  33. if err != nil {
  34. return nil, err
  35. }
  36. buf = buf[:off:cap(buf)]
  37. hash, ok := AlgorithmToHash[rr.Algorithm]
  38. if !ok {
  39. return nil, ErrAlg
  40. }
  41. hasher := hash.New()
  42. // Write SIG rdata
  43. hasher.Write(buf[len(mbuf)+1+2+2+4+2:])
  44. // Write message
  45. hasher.Write(buf[:len(mbuf)])
  46. signature, err := sign(k, hasher.Sum(nil), hash, rr.Algorithm)
  47. if err != nil {
  48. return nil, err
  49. }
  50. rr.Signature = toBase64(signature)
  51. buf = append(buf, signature...)
  52. if len(buf) > int(^uint16(0)) {
  53. return nil, ErrBuf
  54. }
  55. // Adjust sig data length
  56. rdoff := len(mbuf) + 1 + 2 + 2 + 4
  57. rdlen := binary.BigEndian.Uint16(buf[rdoff:])
  58. rdlen += uint16(len(signature))
  59. binary.BigEndian.PutUint16(buf[rdoff:], rdlen)
  60. // Adjust additional count
  61. adc := binary.BigEndian.Uint16(buf[10:])
  62. adc++
  63. binary.BigEndian.PutUint16(buf[10:], adc)
  64. return buf, nil
  65. }
  66. // Verify validates the message buf using the key k.
  67. // It's assumed that buf is a valid message from which rr was unpacked.
  68. func (rr *SIG) Verify(k *KEY, buf []byte) error {
  69. if k == nil {
  70. return ErrKey
  71. }
  72. if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
  73. return ErrKey
  74. }
  75. var hash crypto.Hash
  76. switch rr.Algorithm {
  77. case DSA, RSASHA1:
  78. hash = crypto.SHA1
  79. case RSASHA256, ECDSAP256SHA256:
  80. hash = crypto.SHA256
  81. case ECDSAP384SHA384:
  82. hash = crypto.SHA384
  83. case RSASHA512:
  84. hash = crypto.SHA512
  85. default:
  86. return ErrAlg
  87. }
  88. hasher := hash.New()
  89. buflen := len(buf)
  90. qdc := binary.BigEndian.Uint16(buf[4:])
  91. anc := binary.BigEndian.Uint16(buf[6:])
  92. auc := binary.BigEndian.Uint16(buf[8:])
  93. adc := binary.BigEndian.Uint16(buf[10:])
  94. offset := headerSize
  95. var err error
  96. for i := uint16(0); i < qdc && offset < buflen; i++ {
  97. _, offset, err = UnpackDomainName(buf, offset)
  98. if err != nil {
  99. return err
  100. }
  101. // Skip past Type and Class
  102. offset += 2 + 2
  103. }
  104. for i := uint16(1); i < anc+auc+adc && offset < buflen; i++ {
  105. _, offset, err = UnpackDomainName(buf, offset)
  106. if err != nil {
  107. return err
  108. }
  109. // Skip past Type, Class and TTL
  110. offset += 2 + 2 + 4
  111. if offset+1 >= buflen {
  112. continue
  113. }
  114. rdlen := binary.BigEndian.Uint16(buf[offset:])
  115. offset += 2
  116. offset += int(rdlen)
  117. }
  118. if offset >= buflen {
  119. return &Error{err: "overflowing unpacking signed message"}
  120. }
  121. // offset should be just prior to SIG
  122. bodyend := offset
  123. // owner name SHOULD be root
  124. _, offset, err = UnpackDomainName(buf, offset)
  125. if err != nil {
  126. return err
  127. }
  128. // Skip Type, Class, TTL, RDLen
  129. offset += 2 + 2 + 4 + 2
  130. sigstart := offset
  131. // Skip Type Covered, Algorithm, Labels, Original TTL
  132. offset += 2 + 1 + 1 + 4
  133. if offset+4+4 >= buflen {
  134. return &Error{err: "overflow unpacking signed message"}
  135. }
  136. expire := binary.BigEndian.Uint32(buf[offset:])
  137. offset += 4
  138. incept := binary.BigEndian.Uint32(buf[offset:])
  139. offset += 4
  140. now := uint32(time.Now().Unix())
  141. if now < incept || now > expire {
  142. return ErrTime
  143. }
  144. // Skip key tag
  145. offset += 2
  146. var signername string
  147. signername, offset, err = UnpackDomainName(buf, offset)
  148. if err != nil {
  149. return err
  150. }
  151. // If key has come from the DNS name compression might
  152. // have mangled the case of the name
  153. if !strings.EqualFold(signername, k.Header().Name) {
  154. return &Error{err: "signer name doesn't match key name"}
  155. }
  156. sigend := offset
  157. hasher.Write(buf[sigstart:sigend])
  158. hasher.Write(buf[:10])
  159. hasher.Write([]byte{
  160. byte((adc - 1) << 8),
  161. byte(adc - 1),
  162. })
  163. hasher.Write(buf[12:bodyend])
  164. hashed := hasher.Sum(nil)
  165. sig := buf[sigend:]
  166. switch k.Algorithm {
  167. case DSA:
  168. pk := k.publicKeyDSA()
  169. sig = sig[1:]
  170. r := big.NewInt(0)
  171. r.SetBytes(sig[:len(sig)/2])
  172. s := big.NewInt(0)
  173. s.SetBytes(sig[len(sig)/2:])
  174. if pk != nil {
  175. if dsa.Verify(pk, hashed, r, s) {
  176. return nil
  177. }
  178. return ErrSig
  179. }
  180. case RSASHA1, RSASHA256, RSASHA512:
  181. pk := k.publicKeyRSA()
  182. if pk != nil {
  183. return rsa.VerifyPKCS1v15(pk, hash, hashed, sig)
  184. }
  185. case ECDSAP256SHA256, ECDSAP384SHA384:
  186. pk := k.publicKeyECDSA()
  187. r := big.NewInt(0)
  188. r.SetBytes(sig[:len(sig)/2])
  189. s := big.NewInt(0)
  190. s.SetBytes(sig[len(sig)/2:])
  191. if pk != nil {
  192. if ecdsa.Verify(pk, hashed, r, s) {
  193. return nil
  194. }
  195. return ErrSig
  196. }
  197. }
  198. return ErrKeyAlg
  199. }