| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 | // Copyright 2013 The Go Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package yamlimport (	"bytes"	"encoding"	"encoding/json"	"reflect"	"sort"	"strings"	"sync"	"unicode"	"unicode/utf8")// indirect walks down v allocating pointers as needed,// until it gets to a non-pointer.// if it encounters an Unmarshaler, indirect stops and returns that.// if decodingNull is true, indirect stops at the last pointer so it can be set to nil.func indirect(v reflect.Value, decodingNull bool) (json.Unmarshaler, encoding.TextUnmarshaler, reflect.Value) {	// If v is a named type and is addressable,	// start with its address, so that if the type has pointer methods,	// we find them.	if v.Kind() != reflect.Ptr && v.Type().Name() != "" && v.CanAddr() {		v = v.Addr()	}	for {		// Load value from interface, but only if the result will be		// usefully addressable.		if v.Kind() == reflect.Interface && !v.IsNil() {			e := v.Elem()			if e.Kind() == reflect.Ptr && !e.IsNil() && (!decodingNull || e.Elem().Kind() == reflect.Ptr) {				v = e				continue			}		}		if v.Kind() != reflect.Ptr {			break		}		if v.Elem().Kind() != reflect.Ptr && decodingNull && v.CanSet() {			break		}		if v.IsNil() {			if v.CanSet() {				v.Set(reflect.New(v.Type().Elem()))			} else {				v = reflect.New(v.Type().Elem())			}		}		if v.Type().NumMethod() > 0 {			if u, ok := v.Interface().(json.Unmarshaler); ok {				return u, nil, reflect.Value{}			}			if u, ok := v.Interface().(encoding.TextUnmarshaler); ok {				return nil, u, reflect.Value{}			}		}		v = v.Elem()	}	return nil, nil, v}// A field represents a single field found in a struct.type field struct {	name      string	nameBytes []byte                 // []byte(name)	equalFold func(s, t []byte) bool // bytes.EqualFold or equivalent	tag       bool	index     []int	typ       reflect.Type	omitEmpty bool	quoted    bool}func fillField(f field) field {	f.nameBytes = []byte(f.name)	f.equalFold = foldFunc(f.nameBytes)	return f}// byName sorts field by name, breaking ties with depth,// then breaking ties with "name came from json tag", then// breaking ties with index sequence.type byName []fieldfunc (x byName) Len() int { return len(x) }func (x byName) Swap(i, j int) { x[i], x[j] = x[j], x[i] }func (x byName) Less(i, j int) bool {	if x[i].name != x[j].name {		return x[i].name < x[j].name	}	if len(x[i].index) != len(x[j].index) {		return len(x[i].index) < len(x[j].index)	}	if x[i].tag != x[j].tag {		return x[i].tag	}	return byIndex(x).Less(i, j)}// byIndex sorts field by index sequence.type byIndex []fieldfunc (x byIndex) Len() int { return len(x) }func (x byIndex) Swap(i, j int) { x[i], x[j] = x[j], x[i] }func (x byIndex) Less(i, j int) bool {	for k, xik := range x[i].index {		if k >= len(x[j].index) {			return false		}		if xik != x[j].index[k] {			return xik < x[j].index[k]		}	}	return len(x[i].index) < len(x[j].index)}// typeFields returns a list of fields that JSON should recognize for the given type.// The algorithm is breadth-first search over the set of structs to include - the top struct// and then any reachable anonymous structs.func typeFields(t reflect.Type) []field {	// Anonymous fields to explore at the current level and the next.	current := []field{}	next := []field{{typ: t}}	// Count of queued names for current level and the next.	count := map[reflect.Type]int{}	nextCount := map[reflect.Type]int{}	// Types already visited at an earlier level.	visited := map[reflect.Type]bool{}	// Fields found.	var fields []field	for len(next) > 0 {		current, next = next, current[:0]		count, nextCount = nextCount, map[reflect.Type]int{}		for _, f := range current {			if visited[f.typ] {				continue			}			visited[f.typ] = true			// Scan f.typ for fields to include.			for i := 0; i < f.typ.NumField(); i++ {				sf := f.typ.Field(i)				if sf.PkgPath != "" { // unexported					continue				}				tag := sf.Tag.Get("json")				if tag == "-" {					continue				}				name, opts := parseTag(tag)				if !isValidTag(name) {					name = ""				}				index := make([]int, len(f.index)+1)				copy(index, f.index)				index[len(f.index)] = i				ft := sf.Type				if ft.Name() == "" && ft.Kind() == reflect.Ptr {					// Follow pointer.					ft = ft.Elem()				}				// Record found field and index sequence.				if name != "" || !sf.Anonymous || ft.Kind() != reflect.Struct {					tagged := name != ""					if name == "" {						name = sf.Name					}					fields = append(fields, fillField(field{						name:      name,						tag:       tagged,						index:     index,						typ:       ft,						omitEmpty: opts.Contains("omitempty"),						quoted:    opts.Contains("string"),					}))					if count[f.typ] > 1 {						// If there were multiple instances, add a second,						// so that the annihilation code will see a duplicate.						// It only cares about the distinction between 1 or 2,						// so don't bother generating any more copies.						fields = append(fields, fields[len(fields)-1])					}					continue				}				// Record new anonymous struct to explore in next round.				nextCount[ft]++				if nextCount[ft] == 1 {					next = append(next, fillField(field{name: ft.Name(), index: index, typ: ft}))				}			}		}	}	sort.Sort(byName(fields))	// Delete all fields that are hidden by the Go rules for embedded fields,	// except that fields with JSON tags are promoted.	// The fields are sorted in primary order of name, secondary order	// of field index length. Loop over names; for each name, delete	// hidden fields by choosing the one dominant field that survives.	out := fields[:0]	for advance, i := 0, 0; i < len(fields); i += advance {		// One iteration per name.		// Find the sequence of fields with the name of this first field.		fi := fields[i]		name := fi.name		for advance = 1; i+advance < len(fields); advance++ {			fj := fields[i+advance]			if fj.name != name {				break			}		}		if advance == 1 { // Only one field with this name			out = append(out, fi)			continue		}		dominant, ok := dominantField(fields[i : i+advance])		if ok {			out = append(out, dominant)		}	}	fields = out	sort.Sort(byIndex(fields))	return fields}// dominantField looks through the fields, all of which are known to// have the same name, to find the single field that dominates the// others using Go's embedding rules, modified by the presence of// JSON tags. If there are multiple top-level fields, the boolean// will be false: This condition is an error in Go and we skip all// the fields.func dominantField(fields []field) (field, bool) {	// The fields are sorted in increasing index-length order. The winner	// must therefore be one with the shortest index length. Drop all	// longer entries, which is easy: just truncate the slice.	length := len(fields[0].index)	tagged := -1 // Index of first tagged field.	for i, f := range fields {		if len(f.index) > length {			fields = fields[:i]			break		}		if f.tag {			if tagged >= 0 {				// Multiple tagged fields at the same level: conflict.				// Return no field.				return field{}, false			}			tagged = i		}	}	if tagged >= 0 {		return fields[tagged], true	}	// All remaining fields have the same length. If there's more than one,	// we have a conflict (two fields named "X" at the same level) and we	// return no field.	if len(fields) > 1 {		return field{}, false	}	return fields[0], true}var fieldCache struct {	sync.RWMutex	m map[reflect.Type][]field}// cachedTypeFields is like typeFields but uses a cache to avoid repeated work.func cachedTypeFields(t reflect.Type) []field {	fieldCache.RLock()	f := fieldCache.m[t]	fieldCache.RUnlock()	if f != nil {		return f	}	// Compute fields without lock.	// Might duplicate effort but won't hold other computations back.	f = typeFields(t)	if f == nil {		f = []field{}	}	fieldCache.Lock()	if fieldCache.m == nil {		fieldCache.m = map[reflect.Type][]field{}	}	fieldCache.m[t] = f	fieldCache.Unlock()	return f}func isValidTag(s string) bool {	if s == "" {		return false	}	for _, c := range s {		switch {		case strings.ContainsRune("!#$%&()*+-./:<=>?@[]^_{|}~ ", c):			// Backslash and quote chars are reserved, but			// otherwise any punctuation chars are allowed			// in a tag name.		default:			if !unicode.IsLetter(c) && !unicode.IsDigit(c) {				return false			}		}	}	return true}const (	caseMask     = ^byte(0x20) // Mask to ignore case in ASCII.	kelvin       = '\u212a'	smallLongEss = '\u017f')// foldFunc returns one of four different case folding equivalence// functions, from most general (and slow) to fastest://// 1) bytes.EqualFold, if the key s contains any non-ASCII UTF-8// 2) equalFoldRight, if s contains special folding ASCII ('k', 'K', 's', 'S')// 3) asciiEqualFold, no special, but includes non-letters (including _)// 4) simpleLetterEqualFold, no specials, no non-letters.//// The letters S and K are special because they map to 3 runes, not just 2://  * S maps to s and to U+017F 'ſ' Latin small letter long s//  * k maps to K and to U+212A 'K' Kelvin sign// See http://play.golang.org/p/tTxjOc0OGo//// The returned function is specialized for matching against s and// should only be given s. It's not curried for performance reasons.func foldFunc(s []byte) func(s, t []byte) bool {	nonLetter := false	special := false // special letter	for _, b := range s {		if b >= utf8.RuneSelf {			return bytes.EqualFold		}		upper := b & caseMask		if upper < 'A' || upper > 'Z' {			nonLetter = true		} else if upper == 'K' || upper == 'S' {			// See above for why these letters are special.			special = true		}	}	if special {		return equalFoldRight	}	if nonLetter {		return asciiEqualFold	}	return simpleLetterEqualFold}// equalFoldRight is a specialization of bytes.EqualFold when s is// known to be all ASCII (including punctuation), but contains an 's',// 'S', 'k', or 'K', requiring a Unicode fold on the bytes in t.// See comments on foldFunc.func equalFoldRight(s, t []byte) bool {	for _, sb := range s {		if len(t) == 0 {			return false		}		tb := t[0]		if tb < utf8.RuneSelf {			if sb != tb {				sbUpper := sb & caseMask				if 'A' <= sbUpper && sbUpper <= 'Z' {					if sbUpper != tb&caseMask {						return false					}				} else {					return false				}			}			t = t[1:]			continue		}		// sb is ASCII and t is not. t must be either kelvin		// sign or long s; sb must be s, S, k, or K.		tr, size := utf8.DecodeRune(t)		switch sb {		case 's', 'S':			if tr != smallLongEss {				return false			}		case 'k', 'K':			if tr != kelvin {				return false			}		default:			return false		}		t = t[size:]	}	if len(t) > 0 {		return false	}	return true}// asciiEqualFold is a specialization of bytes.EqualFold for use when// s is all ASCII (but may contain non-letters) and contains no// special-folding letters.// See comments on foldFunc.func asciiEqualFold(s, t []byte) bool {	if len(s) != len(t) {		return false	}	for i, sb := range s {		tb := t[i]		if sb == tb {			continue		}		if ('a' <= sb && sb <= 'z') || ('A' <= sb && sb <= 'Z') {			if sb&caseMask != tb&caseMask {				return false			}		} else {			return false		}	}	return true}// simpleLetterEqualFold is a specialization of bytes.EqualFold for// use when s is all ASCII letters (no underscores, etc) and also// doesn't contain 'k', 'K', 's', or 'S'.// See comments on foldFunc.func simpleLetterEqualFold(s, t []byte) bool {	if len(s) != len(t) {		return false	}	for i, b := range s {		if b&caseMask != t[i]&caseMask {			return false		}	}	return true}// tagOptions is the string following a comma in a struct field's "json"// tag, or the empty string. It does not include the leading comma.type tagOptions string// parseTag splits a struct field's json tag into its name and// comma-separated options.func parseTag(tag string) (string, tagOptions) {	if idx := strings.Index(tag, ","); idx != -1 {		return tag[:idx], tagOptions(tag[idx+1:])	}	return tag, tagOptions("")}// Contains reports whether a comma-separated list of options// contains a particular substr flag. substr must be surrounded by a// string boundary or commas.func (o tagOptions) Contains(optionName string) bool {	if len(o) == 0 {		return false	}	s := string(o)	for s != "" {		var next string		i := strings.Index(s, ",")		if i >= 0 {			s, next = s[:i], s[i+1:]		}		if s == optionName {			return true		}		s = next	}	return false}
 |