| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 | // Copyright ©2014 The Gonum Authors. All rights reserved.// Use of this source code is governed by a BSD-style// license that can be found in the LICENSE file.package matimport (	"gonum.org/v1/gonum/blas"	"gonum.org/v1/gonum/blas/blas64"	"gonum.org/v1/gonum/internal/asm/f64")// Inner computes the generalized inner product//  xᵀ A y// between the vectors x and y with matrix A, where x and y are treated as// column vectors.//// This is only a true inner product if A is symmetric positive definite, though// the operation works for any matrix A.//// Inner panics if x.Len != m or y.Len != n when A is an m x n matrix.func Inner(x Vector, a Matrix, y Vector) float64 {	m, n := a.Dims()	if x.Len() != m {		panic(ErrShape)	}	if y.Len() != n {		panic(ErrShape)	}	if m == 0 || n == 0 {		return 0	}	var sum float64	switch a := a.(type) {	case RawSymmetricer:		amat := a.RawSymmetric()		if amat.Uplo != blas.Upper {			// Panic as a string not a mat.Error.			panic(badSymTriangle)		}		var xmat, ymat blas64.Vector		if xrv, ok := x.(RawVectorer); ok {			xmat = xrv.RawVector()		} else {			break		}		if yrv, ok := y.(RawVectorer); ok {			ymat = yrv.RawVector()		} else {			break		}		for i := 0; i < x.Len(); i++ {			xi := x.AtVec(i)			if xi != 0 {				if ymat.Inc == 1 {					sum += xi * f64.DotUnitary(						amat.Data[i*amat.Stride+i:i*amat.Stride+n],						ymat.Data[i:],					)				} else {					sum += xi * f64.DotInc(						amat.Data[i*amat.Stride+i:i*amat.Stride+n],						ymat.Data[i*ymat.Inc:], uintptr(n-i),						1, uintptr(ymat.Inc),						0, 0,					)				}			}			yi := y.AtVec(i)			if i != n-1 && yi != 0 {				if xmat.Inc == 1 {					sum += yi * f64.DotUnitary(						amat.Data[i*amat.Stride+i+1:i*amat.Stride+n],						xmat.Data[i+1:],					)				} else {					sum += yi * f64.DotInc(						amat.Data[i*amat.Stride+i+1:i*amat.Stride+n],						xmat.Data[(i+1)*xmat.Inc:], uintptr(n-i-1),						1, uintptr(xmat.Inc),						0, 0,					)				}			}		}		return sum	case RawMatrixer:		amat := a.RawMatrix()		var ymat blas64.Vector		if yrv, ok := y.(RawVectorer); ok {			ymat = yrv.RawVector()		} else {			break		}		for i := 0; i < x.Len(); i++ {			xi := x.AtVec(i)			if xi != 0 {				if ymat.Inc == 1 {					sum += xi * f64.DotUnitary(						amat.Data[i*amat.Stride:i*amat.Stride+n],						ymat.Data,					)				} else {					sum += xi * f64.DotInc(						amat.Data[i*amat.Stride:i*amat.Stride+n],						ymat.Data, uintptr(n),						1, uintptr(ymat.Inc),						0, 0,					)				}			}		}		return sum	}	for i := 0; i < x.Len(); i++ {		xi := x.AtVec(i)		for j := 0; j < y.Len(); j++ {			sum += xi * a.At(i, j) * y.AtVec(j)		}	}	return sum}
 |