| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 | 
							- // Copyright 2015 The etcd Authors
 
- //
 
- // Licensed under the Apache License, Version 2.0 (the "License");
 
- // you may not use this file except in compliance with the License.
 
- // You may obtain a copy of the License at
 
- //
 
- //     http://www.apache.org/licenses/LICENSE-2.0
 
- //
 
- // Unless required by applicable law or agreed to in writing, software
 
- // distributed under the License is distributed on an "AS IS" BASIS,
 
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- // See the License for the specific language governing permissions and
 
- // limitations under the License.
 
- package raft
 
- import (
 
- 	"context"
 
- 	"errors"
 
- 	pb "go.etcd.io/etcd/raft/raftpb"
 
- )
 
- type SnapshotStatus int
 
- const (
 
- 	SnapshotFinish  SnapshotStatus = 1
 
- 	SnapshotFailure SnapshotStatus = 2
 
- )
 
- var (
 
- 	emptyState = pb.HardState{}
 
- 	// ErrStopped is returned by methods on Nodes that have been stopped.
 
- 	ErrStopped = errors.New("raft: stopped")
 
- )
 
- // SoftState provides state that is useful for logging and debugging.
 
- // The state is volatile and does not need to be persisted to the WAL.
 
- type SoftState struct {
 
- 	Lead      uint64 // must use atomic operations to access; keep 64-bit aligned.
 
- 	RaftState StateType
 
- }
 
- func (a *SoftState) equal(b *SoftState) bool {
 
- 	return a.Lead == b.Lead && a.RaftState == b.RaftState
 
- }
 
- // Ready encapsulates the entries and messages that are ready to read,
 
- // be saved to stable storage, committed or sent to other peers.
 
- // All fields in Ready are read-only.
 
- type Ready struct {
 
- 	// The current volatile state of a Node.
 
- 	// SoftState will be nil if there is no update.
 
- 	// It is not required to consume or store SoftState.
 
- 	*SoftState
 
- 	// The current state of a Node to be saved to stable storage BEFORE
 
- 	// Messages are sent.
 
- 	// HardState will be equal to empty state if there is no update.
 
- 	pb.HardState
 
- 	// ReadStates can be used for node to serve linearizable read requests locally
 
- 	// when its applied index is greater than the index in ReadState.
 
- 	// Note that the readState will be returned when raft receives msgReadIndex.
 
- 	// The returned is only valid for the request that requested to read.
 
- 	ReadStates []ReadState
 
- 	// Entries specifies entries to be saved to stable storage BEFORE
 
- 	// Messages are sent.
 
- 	Entries []pb.Entry
 
- 	// Snapshot specifies the snapshot to be saved to stable storage.
 
- 	Snapshot pb.Snapshot
 
- 	// CommittedEntries specifies entries to be committed to a
 
- 	// store/state-machine. These have previously been committed to stable
 
- 	// store.
 
- 	CommittedEntries []pb.Entry
 
- 	// Messages specifies outbound messages to be sent AFTER Entries are
 
- 	// committed to stable storage.
 
- 	// If it contains a MsgSnap message, the application MUST report back to raft
 
- 	// when the snapshot has been received or has failed by calling ReportSnapshot.
 
- 	Messages []pb.Message
 
- 	// MustSync indicates whether the HardState and Entries must be synchronously
 
- 	// written to disk or if an asynchronous write is permissible.
 
- 	MustSync bool
 
- }
 
- func isHardStateEqual(a, b pb.HardState) bool {
 
- 	return a.Term == b.Term && a.Vote == b.Vote && a.Commit == b.Commit
 
- }
 
- // IsEmptyHardState returns true if the given HardState is empty.
 
- func IsEmptyHardState(st pb.HardState) bool {
 
- 	return isHardStateEqual(st, emptyState)
 
- }
 
- // IsEmptySnap returns true if the given Snapshot is empty.
 
- func IsEmptySnap(sp pb.Snapshot) bool {
 
- 	return sp.Metadata.Index == 0
 
- }
 
- func (rd Ready) containsUpdates() bool {
 
- 	return rd.SoftState != nil || !IsEmptyHardState(rd.HardState) ||
 
- 		!IsEmptySnap(rd.Snapshot) || len(rd.Entries) > 0 ||
 
- 		len(rd.CommittedEntries) > 0 || len(rd.Messages) > 0 || len(rd.ReadStates) != 0
 
- }
 
- // appliedCursor extracts from the Ready the highest index the client has
 
- // applied (once the Ready is confirmed via Advance). If no information is
 
- // contained in the Ready, returns zero.
 
- func (rd Ready) appliedCursor() uint64 {
 
- 	if n := len(rd.CommittedEntries); n > 0 {
 
- 		return rd.CommittedEntries[n-1].Index
 
- 	}
 
- 	if index := rd.Snapshot.Metadata.Index; index > 0 {
 
- 		return index
 
- 	}
 
- 	return 0
 
- }
 
- // Node represents a node in a raft cluster.
 
- type Node interface {
 
- 	// Tick increments the internal logical clock for the Node by a single tick. Election
 
- 	// timeouts and heartbeat timeouts are in units of ticks.
 
- 	Tick()
 
- 	// Campaign causes the Node to transition to candidate state and start campaigning to become leader.
 
- 	Campaign(ctx context.Context) error
 
- 	// Propose proposes that data be appended to the log. Note that proposals can be lost without
 
- 	// notice, therefore it is user's job to ensure proposal retries.
 
- 	Propose(ctx context.Context, data []byte) error
 
- 	// ProposeConfChange proposes a configuration change. Like any proposal, the
 
- 	// configuration change may be dropped with or without an error being
 
- 	// returned. In particular, configuration changes are dropped unless the
 
- 	// leader has certainty that there is no prior unapplied configuration
 
- 	// change in its log.
 
- 	//
 
- 	// The method accepts either a pb.ConfChange (deprecated) or pb.ConfChangeV2
 
- 	// message. The latter allows arbitrary configuration changes via joint
 
- 	// consensus, notably including replacing a voter. Passing a ConfChangeV2
 
- 	// message is only allowed if all Nodes participating in the cluster run a
 
- 	// version of this library aware of the V2 API. See pb.ConfChangeV2 for
 
- 	// usage details and semantics.
 
- 	ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error
 
- 	// Step advances the state machine using the given message. ctx.Err() will be returned, if any.
 
- 	Step(ctx context.Context, msg pb.Message) error
 
- 	// Ready returns a channel that returns the current point-in-time state.
 
- 	// Users of the Node must call Advance after retrieving the state returned by Ready.
 
- 	//
 
- 	// NOTE: No committed entries from the next Ready may be applied until all committed entries
 
- 	// and snapshots from the previous one have finished.
 
- 	Ready() <-chan Ready
 
- 	// Advance notifies the Node that the application has saved progress up to the last Ready.
 
- 	// It prepares the node to return the next available Ready.
 
- 	//
 
- 	// The application should generally call Advance after it applies the entries in last Ready.
 
- 	//
 
- 	// However, as an optimization, the application may call Advance while it is applying the
 
- 	// commands. For example. when the last Ready contains a snapshot, the application might take
 
- 	// a long time to apply the snapshot data. To continue receiving Ready without blocking raft
 
- 	// progress, it can call Advance before finishing applying the last ready.
 
- 	Advance()
 
- 	// ApplyConfChange applies a config change (previously passed to
 
- 	// ProposeConfChange) to the node. This must be called whenever a config
 
- 	// change is observed in Ready.CommittedEntries.
 
- 	//
 
- 	// Returns an opaque non-nil ConfState protobuf which must be recorded in
 
- 	// snapshots.
 
- 	ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState
 
- 	// TransferLeadership attempts to transfer leadership to the given transferee.
 
- 	TransferLeadership(ctx context.Context, lead, transferee uint64)
 
- 	// ReadIndex request a read state. The read state will be set in the ready.
 
- 	// Read state has a read index. Once the application advances further than the read
 
- 	// index, any linearizable read requests issued before the read request can be
 
- 	// processed safely. The read state will have the same rctx attached.
 
- 	ReadIndex(ctx context.Context, rctx []byte) error
 
- 	// Status returns the current status of the raft state machine.
 
- 	Status() Status
 
- 	// ReportUnreachable reports the given node is not reachable for the last send.
 
- 	ReportUnreachable(id uint64)
 
- 	// ReportSnapshot reports the status of the sent snapshot. The id is the raft ID of the follower
 
- 	// who is meant to receive the snapshot, and the status is SnapshotFinish or SnapshotFailure.
 
- 	// Calling ReportSnapshot with SnapshotFinish is a no-op. But, any failure in applying a
 
- 	// snapshot (for e.g., while streaming it from leader to follower), should be reported to the
 
- 	// leader with SnapshotFailure. When leader sends a snapshot to a follower, it pauses any raft
 
- 	// log probes until the follower can apply the snapshot and advance its state. If the follower
 
- 	// can't do that, for e.g., due to a crash, it could end up in a limbo, never getting any
 
- 	// updates from the leader. Therefore, it is crucial that the application ensures that any
 
- 	// failure in snapshot sending is caught and reported back to the leader; so it can resume raft
 
- 	// log probing in the follower.
 
- 	ReportSnapshot(id uint64, status SnapshotStatus)
 
- 	// Stop performs any necessary termination of the Node.
 
- 	Stop()
 
- }
 
- type Peer struct {
 
- 	ID      uint64
 
- 	Context []byte
 
- }
 
- // StartNode returns a new Node given configuration and a list of raft peers.
 
- // It appends a ConfChangeAddNode entry for each given peer to the initial log.
 
- //
 
- // Peers must not be zero length; call RestartNode in that case.
 
- func StartNode(c *Config, peers []Peer) Node {
 
- 	if len(peers) == 0 {
 
- 		panic("no peers given; use RestartNode instead")
 
- 	}
 
- 	rn, err := NewRawNode(c)
 
- 	if err != nil {
 
- 		panic(err)
 
- 	}
 
- 	rn.Bootstrap(peers)
 
- 	n := newNode(rn)
 
- 	go n.run()
 
- 	return &n
 
- }
 
- // RestartNode is similar to StartNode but does not take a list of peers.
 
- // The current membership of the cluster will be restored from the Storage.
 
- // If the caller has an existing state machine, pass in the last log index that
 
- // has been applied to it; otherwise use zero.
 
- func RestartNode(c *Config) Node {
 
- 	rn, err := NewRawNode(c)
 
- 	if err != nil {
 
- 		panic(err)
 
- 	}
 
- 	n := newNode(rn)
 
- 	go n.run()
 
- 	return &n
 
- }
 
- type msgWithResult struct {
 
- 	m      pb.Message
 
- 	result chan error
 
- }
 
- // node is the canonical implementation of the Node interface
 
- type node struct {
 
- 	propc      chan msgWithResult
 
- 	recvc      chan pb.Message
 
- 	confc      chan pb.ConfChangeV2
 
- 	confstatec chan pb.ConfState
 
- 	readyc     chan Ready
 
- 	advancec   chan struct{}
 
- 	tickc      chan struct{}
 
- 	done       chan struct{}
 
- 	stop       chan struct{}
 
- 	status     chan chan Status
 
- 	rn *RawNode
 
- }
 
- func newNode(rn *RawNode) node {
 
- 	return node{
 
- 		propc:      make(chan msgWithResult),
 
- 		recvc:      make(chan pb.Message),
 
- 		confc:      make(chan pb.ConfChangeV2),
 
- 		confstatec: make(chan pb.ConfState),
 
- 		readyc:     make(chan Ready),
 
- 		advancec:   make(chan struct{}),
 
- 		// make tickc a buffered chan, so raft node can buffer some ticks when the node
 
- 		// is busy processing raft messages. Raft node will resume process buffered
 
- 		// ticks when it becomes idle.
 
- 		tickc:  make(chan struct{}, 128),
 
- 		done:   make(chan struct{}),
 
- 		stop:   make(chan struct{}),
 
- 		status: make(chan chan Status),
 
- 		rn:     rn,
 
- 	}
 
- }
 
- func (n *node) Stop() {
 
- 	select {
 
- 	case n.stop <- struct{}{}:
 
- 		// Not already stopped, so trigger it
 
- 	case <-n.done:
 
- 		// Node has already been stopped - no need to do anything
 
- 		return
 
- 	}
 
- 	// Block until the stop has been acknowledged by run()
 
- 	<-n.done
 
- }
 
- func (n *node) run() {
 
- 	var propc chan msgWithResult
 
- 	var readyc chan Ready
 
- 	var advancec chan struct{}
 
- 	var rd Ready
 
- 	r := n.rn.raft
 
- 	lead := None
 
- 	for {
 
- 		if advancec != nil {
 
- 			readyc = nil
 
- 		} else if n.rn.HasReady() {
 
- 			// Populate a Ready. Note that this Ready is not guaranteed to
 
- 			// actually be handled. We will arm readyc, but there's no guarantee
 
- 			// that we will actually send on it. It's possible that we will
 
- 			// service another channel instead, loop around, and then populate
 
- 			// the Ready again. We could instead force the previous Ready to be
 
- 			// handled first, but it's generally good to emit larger Readys plus
 
- 			// it simplifies testing (by emitting less frequently and more
 
- 			// predictably).
 
- 			rd = n.rn.readyWithoutAccept()
 
- 			readyc = n.readyc
 
- 		}
 
- 		if lead != r.lead {
 
- 			if r.hasLeader() {
 
- 				if lead == None {
 
- 					r.logger.Infof("raft.node: %x elected leader %x at term %d", r.id, r.lead, r.Term)
 
- 				} else {
 
- 					r.logger.Infof("raft.node: %x changed leader from %x to %x at term %d", r.id, lead, r.lead, r.Term)
 
- 				}
 
- 				propc = n.propc
 
- 			} else {
 
- 				r.logger.Infof("raft.node: %x lost leader %x at term %d", r.id, lead, r.Term)
 
- 				propc = nil
 
- 			}
 
- 			lead = r.lead
 
- 		}
 
- 		select {
 
- 		// TODO: maybe buffer the config propose if there exists one (the way
 
- 		// described in raft dissertation)
 
- 		// Currently it is dropped in Step silently.
 
- 		case pm := <-propc:
 
- 			m := pm.m
 
- 			m.From = r.id
 
- 			err := r.Step(m)
 
- 			if pm.result != nil {
 
- 				pm.result <- err
 
- 				close(pm.result)
 
- 			}
 
- 		case m := <-n.recvc:
 
- 			// filter out response message from unknown From.
 
- 			if pr := r.prs.Progress[m.From]; pr != nil || !IsResponseMsg(m.Type) {
 
- 				r.Step(m)
 
- 			}
 
- 		case cc := <-n.confc:
 
- 			_, okBefore := r.prs.Progress[r.id]
 
- 			cs := r.applyConfChange(cc)
 
- 			// If the node was removed, block incoming proposals. Note that we
 
- 			// only do this if the node was in the config before. Nodes may be
 
- 			// a member of the group without knowing this (when they're catching
 
- 			// up on the log and don't have the latest config) and we don't want
 
- 			// to block the proposal channel in that case.
 
- 			//
 
- 			// NB: propc is reset when the leader changes, which, if we learn
 
- 			// about it, sort of implies that we got readded, maybe? This isn't
 
- 			// very sound and likely has bugs.
 
- 			if _, okAfter := r.prs.Progress[r.id]; okBefore && !okAfter {
 
- 				var found bool
 
- 				for _, sl := range [][]uint64{cs.Voters, cs.VotersOutgoing} {
 
- 					for _, id := range sl {
 
- 						if id == r.id {
 
- 							found = true
 
- 						}
 
- 					}
 
- 				}
 
- 				if !found {
 
- 					propc = nil
 
- 				}
 
- 			}
 
- 			select {
 
- 			case n.confstatec <- cs:
 
- 			case <-n.done:
 
- 			}
 
- 		case <-n.tickc:
 
- 			n.rn.Tick()
 
- 		case readyc <- rd:
 
- 			n.rn.acceptReady(rd)
 
- 			advancec = n.advancec
 
- 		case <-advancec:
 
- 			n.rn.Advance(rd)
 
- 			rd = Ready{}
 
- 			advancec = nil
 
- 		case c := <-n.status:
 
- 			c <- getStatus(r)
 
- 		case <-n.stop:
 
- 			close(n.done)
 
- 			return
 
- 		}
 
- 	}
 
- }
 
- // Tick increments the internal logical clock for this Node. Election timeouts
 
- // and heartbeat timeouts are in units of ticks.
 
- func (n *node) Tick() {
 
- 	select {
 
- 	case n.tickc <- struct{}{}:
 
- 	case <-n.done:
 
- 	default:
 
- 		n.rn.raft.logger.Warningf("%x (leader %v) A tick missed to fire. Node blocks too long!", n.rn.raft.id, n.rn.raft.id == n.rn.raft.lead)
 
- 	}
 
- }
 
- func (n *node) Campaign(ctx context.Context) error { return n.step(ctx, pb.Message{Type: pb.MsgHup}) }
 
- func (n *node) Propose(ctx context.Context, data []byte) error {
 
- 	return n.stepWait(ctx, pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Data: data}}})
 
- }
 
- func (n *node) Step(ctx context.Context, m pb.Message) error {
 
- 	// ignore unexpected local messages receiving over network
 
- 	if IsLocalMsg(m.Type) {
 
- 		// TODO: return an error?
 
- 		return nil
 
- 	}
 
- 	return n.step(ctx, m)
 
- }
 
- func confChangeToMsg(c pb.ConfChangeI) (pb.Message, error) {
 
- 	typ, data, err := pb.MarshalConfChange(c)
 
- 	if err != nil {
 
- 		return pb.Message{}, err
 
- 	}
 
- 	return pb.Message{Type: pb.MsgProp, Entries: []pb.Entry{{Type: typ, Data: data}}}, nil
 
- }
 
- func (n *node) ProposeConfChange(ctx context.Context, cc pb.ConfChangeI) error {
 
- 	msg, err := confChangeToMsg(cc)
 
- 	if err != nil {
 
- 		return err
 
- 	}
 
- 	return n.Step(ctx, msg)
 
- }
 
- func (n *node) step(ctx context.Context, m pb.Message) error {
 
- 	return n.stepWithWaitOption(ctx, m, false)
 
- }
 
- func (n *node) stepWait(ctx context.Context, m pb.Message) error {
 
- 	return n.stepWithWaitOption(ctx, m, true)
 
- }
 
- // Step advances the state machine using msgs. The ctx.Err() will be returned,
 
- // if any.
 
- func (n *node) stepWithWaitOption(ctx context.Context, m pb.Message, wait bool) error {
 
- 	if m.Type != pb.MsgProp {
 
- 		select {
 
- 		case n.recvc <- m:
 
- 			return nil
 
- 		case <-ctx.Done():
 
- 			return ctx.Err()
 
- 		case <-n.done:
 
- 			return ErrStopped
 
- 		}
 
- 	}
 
- 	ch := n.propc
 
- 	pm := msgWithResult{m: m}
 
- 	if wait {
 
- 		pm.result = make(chan error, 1)
 
- 	}
 
- 	select {
 
- 	case ch <- pm:
 
- 		if !wait {
 
- 			return nil
 
- 		}
 
- 	case <-ctx.Done():
 
- 		return ctx.Err()
 
- 	case <-n.done:
 
- 		return ErrStopped
 
- 	}
 
- 	select {
 
- 	case err := <-pm.result:
 
- 		if err != nil {
 
- 			return err
 
- 		}
 
- 	case <-ctx.Done():
 
- 		return ctx.Err()
 
- 	case <-n.done:
 
- 		return ErrStopped
 
- 	}
 
- 	return nil
 
- }
 
- func (n *node) Ready() <-chan Ready { return n.readyc }
 
- func (n *node) Advance() {
 
- 	select {
 
- 	case n.advancec <- struct{}{}:
 
- 	case <-n.done:
 
- 	}
 
- }
 
- func (n *node) ApplyConfChange(cc pb.ConfChangeI) *pb.ConfState {
 
- 	var cs pb.ConfState
 
- 	select {
 
- 	case n.confc <- cc.AsV2():
 
- 	case <-n.done:
 
- 	}
 
- 	select {
 
- 	case cs = <-n.confstatec:
 
- 	case <-n.done:
 
- 	}
 
- 	return &cs
 
- }
 
- func (n *node) Status() Status {
 
- 	c := make(chan Status)
 
- 	select {
 
- 	case n.status <- c:
 
- 		return <-c
 
- 	case <-n.done:
 
- 		return Status{}
 
- 	}
 
- }
 
- func (n *node) ReportUnreachable(id uint64) {
 
- 	select {
 
- 	case n.recvc <- pb.Message{Type: pb.MsgUnreachable, From: id}:
 
- 	case <-n.done:
 
- 	}
 
- }
 
- func (n *node) ReportSnapshot(id uint64, status SnapshotStatus) {
 
- 	rej := status == SnapshotFailure
 
- 	select {
 
- 	case n.recvc <- pb.Message{Type: pb.MsgSnapStatus, From: id, Reject: rej}:
 
- 	case <-n.done:
 
- 	}
 
- }
 
- func (n *node) TransferLeadership(ctx context.Context, lead, transferee uint64) {
 
- 	select {
 
- 	// manually set 'from' and 'to', so that leader can voluntarily transfers its leadership
 
- 	case n.recvc <- pb.Message{Type: pb.MsgTransferLeader, From: transferee, To: lead}:
 
- 	case <-n.done:
 
- 	case <-ctx.Done():
 
- 	}
 
- }
 
- func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
 
- 	return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
 
- }
 
- func newReady(r *raft, prevSoftSt *SoftState, prevHardSt pb.HardState) Ready {
 
- 	rd := Ready{
 
- 		Entries:          r.raftLog.unstableEntries(),
 
- 		CommittedEntries: r.raftLog.nextEnts(),
 
- 		Messages:         r.msgs,
 
- 	}
 
- 	if softSt := r.softState(); !softSt.equal(prevSoftSt) {
 
- 		rd.SoftState = softSt
 
- 	}
 
- 	if hardSt := r.hardState(); !isHardStateEqual(hardSt, prevHardSt) {
 
- 		rd.HardState = hardSt
 
- 	}
 
- 	if r.raftLog.unstable.snapshot != nil {
 
- 		rd.Snapshot = *r.raftLog.unstable.snapshot
 
- 	}
 
- 	if len(r.readStates) != 0 {
 
- 		rd.ReadStates = r.readStates
 
- 	}
 
- 	rd.MustSync = MustSync(r.hardState(), prevHardSt, len(rd.Entries))
 
- 	return rd
 
- }
 
- // MustSync returns true if the hard state and count of Raft entries indicate
 
- // that a synchronous write to persistent storage is required.
 
- func MustSync(st, prevst pb.HardState, entsnum int) bool {
 
- 	// Persistent state on all servers:
 
- 	// (Updated on stable storage before responding to RPCs)
 
- 	// currentTerm
 
- 	// votedFor
 
- 	// log entries[]
 
- 	return entsnum != 0 || st.Vote != prevst.Vote || st.Term != prevst.Term
 
- }
 
 
  |