123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778 |
- /*
- Copyright 2016 The Kubernetes Authors.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- */
- package priorities
- import (
- "math"
- utilfeature "k8s.io/apiserver/pkg/util/feature"
- "k8s.io/kubernetes/pkg/features"
- schedulerapi "k8s.io/kubernetes/pkg/scheduler/api"
- schedulernodeinfo "k8s.io/kubernetes/pkg/scheduler/nodeinfo"
- )
- var (
- balancedResourcePriority = &ResourceAllocationPriority{"BalancedResourceAllocation", balancedResourceScorer}
- // BalancedResourceAllocationMap favors nodes with balanced resource usage rate.
- // BalancedResourceAllocationMap should **NOT** be used alone, and **MUST** be used together
- // with LeastRequestedPriority. It calculates the difference between the cpu and memory fraction
- // of capacity, and prioritizes the host based on how close the two metrics are to each other.
- // Detail: score = 10 - variance(cpuFraction,memoryFraction,volumeFraction)*10. The algorithm is partly inspired by:
- // "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced
- // Resource Utilization"
- BalancedResourceAllocationMap = balancedResourcePriority.PriorityMap
- )
- func balancedResourceScorer(requested, allocable *schedulernodeinfo.Resource, includeVolumes bool, requestedVolumes int, allocatableVolumes int) int64 {
- cpuFraction := fractionOfCapacity(requested.MilliCPU, allocable.MilliCPU)
- memoryFraction := fractionOfCapacity(requested.Memory, allocable.Memory)
- // This to find a node which has most balanced CPU, memory and volume usage.
- if includeVolumes && utilfeature.DefaultFeatureGate.Enabled(features.BalanceAttachedNodeVolumes) && allocatableVolumes > 0 {
- volumeFraction := float64(requestedVolumes) / float64(allocatableVolumes)
- if cpuFraction >= 1 || memoryFraction >= 1 || volumeFraction >= 1 {
- // if requested >= capacity, the corresponding host should never be preferred.
- return 0
- }
- // Compute variance for all the three fractions.
- mean := (cpuFraction + memoryFraction + volumeFraction) / float64(3)
- variance := float64((((cpuFraction - mean) * (cpuFraction - mean)) + ((memoryFraction - mean) * (memoryFraction - mean)) + ((volumeFraction - mean) * (volumeFraction - mean))) / float64(3))
- // Since the variance is between positive fractions, it will be positive fraction. 1-variance lets the
- // score to be higher for node which has least variance and multiplying it with 10 provides the scaling
- // factor needed.
- return int64((1 - variance) * float64(schedulerapi.MaxPriority))
- }
- if cpuFraction >= 1 || memoryFraction >= 1 {
- // if requested >= capacity, the corresponding host should never be preferred.
- return 0
- }
- // Upper and lower boundary of difference between cpuFraction and memoryFraction are -1 and 1
- // respectively. Multiplying the absolute value of the difference by 10 scales the value to
- // 0-10 with 0 representing well balanced allocation and 10 poorly balanced. Subtracting it from
- // 10 leads to the score which also scales from 0 to 10 while 10 representing well balanced.
- diff := math.Abs(cpuFraction - memoryFraction)
- return int64((1 - diff) * float64(schedulerapi.MaxPriority))
- }
- func fractionOfCapacity(requested, capacity int64) float64 {
- if capacity == 0 {
- return 1
- }
- return float64(requested) / float64(capacity)
- }
|