| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297 |
- // Code generated by "go generate gonum.org/v1/gonum/blas/gonum”; DO NOT EDIT.
- // Copyright ©2014 The Gonum Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package gonum
- import (
- "gonum.org/v1/gonum/blas"
- "gonum.org/v1/gonum/internal/asm/f32"
- )
- var _ blas.Float32Level2 = Implementation{}
- // Sger performs the rank-one operation
- // A += alpha * x * yᵀ
- // where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Sger(m, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int) {
- if m < 0 {
- panic(mLT0)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if m == 0 || n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (m-1)*incX) || (incX < 0 && len(x) <= (1-m)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- if len(a) < lda*(m-1)+n {
- panic(shortA)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- f32.Ger(uintptr(m), uintptr(n),
- alpha,
- x, uintptr(incX),
- y, uintptr(incY),
- a, uintptr(lda))
- }
- // Sgbmv performs one of the matrix-vector operations
- // y = alpha * A * x + beta * y if tA == blas.NoTrans
- // y = alpha * Aᵀ * x + beta * y if tA == blas.Trans or blas.ConjTrans
- // where A is an m×n band matrix with kL sub-diagonals and kU super-diagonals,
- // x and y are vectors, and alpha and beta are scalars.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Sgbmv(tA blas.Transpose, m, n, kL, kU int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
- if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
- panic(badTranspose)
- }
- if m < 0 {
- panic(mLT0)
- }
- if n < 0 {
- panic(nLT0)
- }
- if kL < 0 {
- panic(kLLT0)
- }
- if kU < 0 {
- panic(kULT0)
- }
- if lda < kL+kU+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if m == 0 || n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(min(m, n+kL)-1)+kL+kU+1 {
- panic(shortA)
- }
- lenX := m
- lenY := n
- if tA == blas.NoTrans {
- lenX = n
- lenY = m
- }
- if (incX > 0 && len(x) <= (lenX-1)*incX) || (incX < 0 && len(x) <= (1-lenX)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (lenY-1)*incY) || (incY < 0 && len(y) <= (1-lenY)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- var kx, ky int
- if incX < 0 {
- kx = -(lenX - 1) * incX
- }
- if incY < 0 {
- ky = -(lenY - 1) * incY
- }
- // Form y = beta * y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:lenY] {
- y[i] = 0
- }
- } else {
- f32.ScalUnitary(beta, y[:lenY])
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < lenY; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- if incY > 0 {
- f32.ScalInc(beta, y, uintptr(lenY), uintptr(incY))
- } else {
- f32.ScalInc(beta, y, uintptr(lenY), uintptr(-incY))
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- // i and j are indices of the compacted banded matrix.
- // off is the offset into the dense matrix (off + j = densej)
- nCol := kU + 1 + kL
- if tA == blas.NoTrans {
- iy := ky
- if incX == 1 {
- for i := 0; i < min(m, n+kL); i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- off := max(0, i-kL)
- atmp := a[i*lda+l : i*lda+u]
- xtmp := x[off : off+u-l]
- var sum float32
- for j, v := range atmp {
- sum += xtmp[j] * v
- }
- y[iy] += sum * alpha
- iy += incY
- }
- return
- }
- for i := 0; i < min(m, n+kL); i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- off := max(0, i-kL)
- atmp := a[i*lda+l : i*lda+u]
- jx := kx
- var sum float32
- for _, v := range atmp {
- sum += x[off*incX+jx] * v
- jx += incX
- }
- y[iy] += sum * alpha
- iy += incY
- }
- return
- }
- if incX == 1 {
- for i := 0; i < min(m, n+kL); i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- off := max(0, i-kL)
- atmp := a[i*lda+l : i*lda+u]
- tmp := alpha * x[i]
- jy := ky
- for _, v := range atmp {
- y[jy+off*incY] += tmp * v
- jy += incY
- }
- }
- return
- }
- ix := kx
- for i := 0; i < min(m, n+kL); i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- off := max(0, i-kL)
- atmp := a[i*lda+l : i*lda+u]
- tmp := alpha * x[ix]
- jy := ky
- for _, v := range atmp {
- y[jy+off*incY] += tmp * v
- jy += incY
- }
- ix += incX
- }
- }
- // Strmv performs one of the matrix-vector operations
- // x = A * x if tA == blas.NoTrans
- // x = Aᵀ * x if tA == blas.Trans or blas.ConjTrans
- // where A is an n×n triangular matrix, and x is a vector.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Strmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
- panic(badTranspose)
- }
- if d != blas.NonUnit && d != blas.Unit {
- panic(badDiag)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- nonUnit := d != blas.Unit
- if n == 1 {
- if nonUnit {
- x[0] *= a[0]
- }
- return
- }
- var kx int
- if incX <= 0 {
- kx = -(n - 1) * incX
- }
- if tA == blas.NoTrans {
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- ilda := i * lda
- var tmp float32
- if nonUnit {
- tmp = a[ilda+i] * x[i]
- } else {
- tmp = x[i]
- }
- x[i] = tmp + f32.DotUnitary(a[ilda+i+1:ilda+n], x[i+1:n])
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- ilda := i * lda
- var tmp float32
- if nonUnit {
- tmp = a[ilda+i] * x[ix]
- } else {
- tmp = x[ix]
- }
- x[ix] = tmp + f32.DotInc(x, a[ilda+i+1:ilda+n], uintptr(n-i-1), uintptr(incX), 1, uintptr(ix+incX), 0)
- ix += incX
- }
- return
- }
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- ilda := i * lda
- var tmp float32
- if nonUnit {
- tmp += a[ilda+i] * x[i]
- } else {
- tmp = x[i]
- }
- x[i] = tmp + f32.DotUnitary(a[ilda:ilda+i], x[:i])
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- ilda := i * lda
- var tmp float32
- if nonUnit {
- tmp = a[ilda+i] * x[ix]
- } else {
- tmp = x[ix]
- }
- x[ix] = tmp + f32.DotInc(x, a[ilda:ilda+i], uintptr(i), uintptr(incX), 1, uintptr(kx), 0)
- ix -= incX
- }
- return
- }
- // Cases where a is transposed.
- if ul == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- ilda := i * lda
- xi := x[i]
- f32.AxpyUnitary(xi, a[ilda+i+1:ilda+n], x[i+1:n])
- if nonUnit {
- x[i] *= a[ilda+i]
- }
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- ilda := i * lda
- xi := x[ix]
- f32.AxpyInc(xi, a[ilda+i+1:ilda+n], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(kx+(i+1)*incX))
- if nonUnit {
- x[ix] *= a[ilda+i]
- }
- ix -= incX
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- ilda := i * lda
- xi := x[i]
- f32.AxpyUnitary(xi, a[ilda:ilda+i], x[:i])
- if nonUnit {
- x[i] *= a[i*lda+i]
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- ilda := i * lda
- xi := x[ix]
- f32.AxpyInc(xi, a[ilda:ilda+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
- if nonUnit {
- x[ix] *= a[ilda+i]
- }
- ix += incX
- }
- }
- // Strsv solves one of the systems of equations
- // A * x = b if tA == blas.NoTrans
- // Aᵀ * x = b if tA == blas.Trans or blas.ConjTrans
- // where A is an n×n triangular matrix, and x and b are vectors.
- //
- // At entry to the function, x contains the values of b, and the result is
- // stored in-place into x.
- //
- // No test for singularity or near-singularity is included in this
- // routine. Such tests must be performed before calling this routine.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Strsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, a []float32, lda int, x []float32, incX int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
- panic(badTranspose)
- }
- if d != blas.NonUnit && d != blas.Unit {
- panic(badDiag)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if n == 1 {
- if d == blas.NonUnit {
- x[0] /= a[0]
- }
- return
- }
- var kx int
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- nonUnit := d == blas.NonUnit
- if tA == blas.NoTrans {
- if ul == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- var sum float32
- atmp := a[i*lda+i+1 : i*lda+n]
- for j, v := range atmp {
- jv := i + j + 1
- sum += x[jv] * v
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= a[i*lda+i]
- }
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- var sum float32
- jx := ix + incX
- atmp := a[i*lda+i+1 : i*lda+n]
- for _, v := range atmp {
- sum += x[jx] * v
- jx += incX
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= a[i*lda+i]
- }
- ix -= incX
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- var sum float32
- atmp := a[i*lda : i*lda+i]
- for j, v := range atmp {
- sum += x[j] * v
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= a[i*lda+i]
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- jx := kx
- var sum float32
- atmp := a[i*lda : i*lda+i]
- for _, v := range atmp {
- sum += x[jx] * v
- jx += incX
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= a[i*lda+i]
- }
- ix += incX
- }
- return
- }
- // Cases where a is transposed.
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if nonUnit {
- x[i] /= a[i*lda+i]
- }
- xi := x[i]
- atmp := a[i*lda+i+1 : i*lda+n]
- for j, v := range atmp {
- jv := j + i + 1
- x[jv] -= v * xi
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- if nonUnit {
- x[ix] /= a[i*lda+i]
- }
- xi := x[ix]
- jx := kx + (i+1)*incX
- atmp := a[i*lda+i+1 : i*lda+n]
- for _, v := range atmp {
- x[jx] -= v * xi
- jx += incX
- }
- ix += incX
- }
- return
- }
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- if nonUnit {
- x[i] /= a[i*lda+i]
- }
- xi := x[i]
- atmp := a[i*lda : i*lda+i]
- for j, v := range atmp {
- x[j] -= v * xi
- }
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- if nonUnit {
- x[ix] /= a[i*lda+i]
- }
- xi := x[ix]
- jx := kx
- atmp := a[i*lda : i*lda+i]
- for _, v := range atmp {
- x[jx] -= v * xi
- jx += incX
- }
- ix -= incX
- }
- }
- // Ssymv performs the matrix-vector operation
- // y = alpha * A * x + beta * y
- // where A is an n×n symmetric matrix, x and y are vectors, and alpha and
- // beta are scalars.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Ssymv(ul blas.Uplo, n int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- // Set up start points
- var kx, ky int
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- if incY < 0 {
- ky = -(n - 1) * incY
- }
- // Form y = beta * y
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:n] {
- y[i] = 0
- }
- } else {
- f32.ScalUnitary(beta, y[:n])
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < n; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- if incY > 0 {
- f32.ScalInc(beta, y, uintptr(n), uintptr(incY))
- } else {
- f32.ScalInc(beta, y, uintptr(n), uintptr(-incY))
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- if n == 1 {
- y[0] += alpha * a[0] * x[0]
- return
- }
- if ul == blas.Upper {
- if incX == 1 {
- iy := ky
- for i := 0; i < n; i++ {
- xv := x[i] * alpha
- sum := x[i] * a[i*lda+i]
- jy := ky + (i+1)*incY
- atmp := a[i*lda+i+1 : i*lda+n]
- for j, v := range atmp {
- jp := j + i + 1
- sum += x[jp] * v
- y[jy] += xv * v
- jy += incY
- }
- y[iy] += alpha * sum
- iy += incY
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- xv := x[ix] * alpha
- sum := x[ix] * a[i*lda+i]
- jx := kx + (i+1)*incX
- jy := ky + (i+1)*incY
- atmp := a[i*lda+i+1 : i*lda+n]
- for _, v := range atmp {
- sum += x[jx] * v
- y[jy] += xv * v
- jx += incX
- jy += incY
- }
- y[iy] += alpha * sum
- ix += incX
- iy += incY
- }
- return
- }
- // Cases where a is lower triangular.
- if incX == 1 {
- iy := ky
- for i := 0; i < n; i++ {
- jy := ky
- xv := alpha * x[i]
- atmp := a[i*lda : i*lda+i]
- var sum float32
- for j, v := range atmp {
- sum += x[j] * v
- y[jy] += xv * v
- jy += incY
- }
- sum += x[i] * a[i*lda+i]
- sum *= alpha
- y[iy] += sum
- iy += incY
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- jx := kx
- jy := ky
- xv := alpha * x[ix]
- atmp := a[i*lda : i*lda+i]
- var sum float32
- for _, v := range atmp {
- sum += x[jx] * v
- y[jy] += xv * v
- jx += incX
- jy += incY
- }
- sum += x[ix] * a[i*lda+i]
- sum *= alpha
- y[iy] += sum
- ix += incX
- iy += incY
- }
- }
- // Stbmv performs one of the matrix-vector operations
- // x = A * x if tA == blas.NoTrans
- // x = Aᵀ * x if tA == blas.Trans or blas.ConjTrans
- // where A is an n×n triangular band matrix with k+1 diagonals, and x is a vector.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Stbmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
- panic(badTranspose)
- }
- if d != blas.NonUnit && d != blas.Unit {
- panic(badDiag)
- }
- if n < 0 {
- panic(nLT0)
- }
- if k < 0 {
- panic(kLT0)
- }
- if lda < k+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+k+1 {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- var kx int
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- nonunit := d != blas.Unit
- if tA == blas.NoTrans {
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- u := min(1+k, n-i)
- var sum float32
- atmp := a[i*lda:]
- xtmp := x[i:]
- for j := 1; j < u; j++ {
- sum += xtmp[j] * atmp[j]
- }
- if nonunit {
- sum += xtmp[0] * atmp[0]
- } else {
- sum += xtmp[0]
- }
- x[i] = sum
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- u := min(1+k, n-i)
- var sum float32
- atmp := a[i*lda:]
- jx := incX
- for j := 1; j < u; j++ {
- sum += x[ix+jx] * atmp[j]
- jx += incX
- }
- if nonunit {
- sum += x[ix] * atmp[0]
- } else {
- sum += x[ix]
- }
- x[ix] = sum
- ix += incX
- }
- return
- }
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- l := max(0, k-i)
- atmp := a[i*lda:]
- var sum float32
- for j := l; j < k; j++ {
- sum += x[i-k+j] * atmp[j]
- }
- if nonunit {
- sum += x[i] * atmp[k]
- } else {
- sum += x[i]
- }
- x[i] = sum
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- l := max(0, k-i)
- atmp := a[i*lda:]
- var sum float32
- jx := l * incX
- for j := l; j < k; j++ {
- sum += x[ix-k*incX+jx] * atmp[j]
- jx += incX
- }
- if nonunit {
- sum += x[ix] * atmp[k]
- } else {
- sum += x[ix]
- }
- x[ix] = sum
- ix -= incX
- }
- return
- }
- if ul == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- u := k + 1
- if i < u {
- u = i + 1
- }
- var sum float32
- for j := 1; j < u; j++ {
- sum += x[i-j] * a[(i-j)*lda+j]
- }
- if nonunit {
- sum += x[i] * a[i*lda]
- } else {
- sum += x[i]
- }
- x[i] = sum
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- u := k + 1
- if i < u {
- u = i + 1
- }
- var sum float32
- jx := incX
- for j := 1; j < u; j++ {
- sum += x[ix-jx] * a[(i-j)*lda+j]
- jx += incX
- }
- if nonunit {
- sum += x[ix] * a[i*lda]
- } else {
- sum += x[ix]
- }
- x[ix] = sum
- ix -= incX
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- u := k
- if i+k >= n {
- u = n - i - 1
- }
- var sum float32
- for j := 0; j < u; j++ {
- sum += x[i+j+1] * a[(i+j+1)*lda+k-j-1]
- }
- if nonunit {
- sum += x[i] * a[i*lda+k]
- } else {
- sum += x[i]
- }
- x[i] = sum
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- u := k
- if i+k >= n {
- u = n - i - 1
- }
- var (
- sum float32
- jx int
- )
- for j := 0; j < u; j++ {
- sum += x[ix+jx+incX] * a[(i+j+1)*lda+k-j-1]
- jx += incX
- }
- if nonunit {
- sum += x[ix] * a[i*lda+k]
- } else {
- sum += x[ix]
- }
- x[ix] = sum
- ix += incX
- }
- }
- // Stpmv performs one of the matrix-vector operations
- // x = A * x if tA == blas.NoTrans
- // x = Aᵀ * x if tA == blas.Trans or blas.ConjTrans
- // where A is an n×n triangular matrix in packed format, and x is a vector.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Stpmv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
- panic(badTranspose)
- }
- if d != blas.NonUnit && d != blas.Unit {
- panic(badDiag)
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- var kx int
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- nonUnit := d == blas.NonUnit
- var offset int // Offset is the index of (i,i)
- if tA == blas.NoTrans {
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- xi := x[i]
- if nonUnit {
- xi *= ap[offset]
- }
- atmp := ap[offset+1 : offset+n-i]
- xtmp := x[i+1:]
- for j, v := range atmp {
- xi += v * xtmp[j]
- }
- x[i] = xi
- offset += n - i
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- xix := x[ix]
- if nonUnit {
- xix *= ap[offset]
- }
- atmp := ap[offset+1 : offset+n-i]
- jx := kx + (i+1)*incX
- for _, v := range atmp {
- xix += v * x[jx]
- jx += incX
- }
- x[ix] = xix
- offset += n - i
- ix += incX
- }
- return
- }
- if incX == 1 {
- offset = n*(n+1)/2 - 1
- for i := n - 1; i >= 0; i-- {
- xi := x[i]
- if nonUnit {
- xi *= ap[offset]
- }
- atmp := ap[offset-i : offset]
- for j, v := range atmp {
- xi += v * x[j]
- }
- x[i] = xi
- offset -= i + 1
- }
- return
- }
- ix := kx + (n-1)*incX
- offset = n*(n+1)/2 - 1
- for i := n - 1; i >= 0; i-- {
- xix := x[ix]
- if nonUnit {
- xix *= ap[offset]
- }
- atmp := ap[offset-i : offset]
- jx := kx
- for _, v := range atmp {
- xix += v * x[jx]
- jx += incX
- }
- x[ix] = xix
- offset -= i + 1
- ix -= incX
- }
- return
- }
- // Cases where ap is transposed.
- if ul == blas.Upper {
- if incX == 1 {
- offset = n*(n+1)/2 - 1
- for i := n - 1; i >= 0; i-- {
- xi := x[i]
- atmp := ap[offset+1 : offset+n-i]
- xtmp := x[i+1:]
- for j, v := range atmp {
- xtmp[j] += v * xi
- }
- if nonUnit {
- x[i] *= ap[offset]
- }
- offset -= n - i + 1
- }
- return
- }
- ix := kx + (n-1)*incX
- offset = n*(n+1)/2 - 1
- for i := n - 1; i >= 0; i-- {
- xix := x[ix]
- jx := kx + (i+1)*incX
- atmp := ap[offset+1 : offset+n-i]
- for _, v := range atmp {
- x[jx] += v * xix
- jx += incX
- }
- if nonUnit {
- x[ix] *= ap[offset]
- }
- offset -= n - i + 1
- ix -= incX
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- xi := x[i]
- atmp := ap[offset-i : offset]
- for j, v := range atmp {
- x[j] += v * xi
- }
- if nonUnit {
- x[i] *= ap[offset]
- }
- offset += i + 2
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- xix := x[ix]
- jx := kx
- atmp := ap[offset-i : offset]
- for _, v := range atmp {
- x[jx] += v * xix
- jx += incX
- }
- if nonUnit {
- x[ix] *= ap[offset]
- }
- ix += incX
- offset += i + 2
- }
- }
- // Stbsv solves one of the systems of equations
- // A * x = b if tA == blas.NoTrans
- // Aᵀ * x = b if tA == blas.Trans or tA == blas.ConjTrans
- // where A is an n×n triangular band matrix with k+1 diagonals,
- // and x and b are vectors.
- //
- // At entry to the function, x contains the values of b, and the result is
- // stored in-place into x.
- //
- // No test for singularity or near-singularity is included in this
- // routine. Such tests must be performed before calling this routine.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Stbsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n, k int, a []float32, lda int, x []float32, incX int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
- panic(badTranspose)
- }
- if d != blas.NonUnit && d != blas.Unit {
- panic(badDiag)
- }
- if n < 0 {
- panic(nLT0)
- }
- if k < 0 {
- panic(kLT0)
- }
- if lda < k+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+k+1 {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- var kx int
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- nonUnit := d == blas.NonUnit
- // Form x = A^-1 x.
- // Several cases below use subslices for speed improvement.
- // The incX != 1 cases usually do not because incX may be negative.
- if tA == blas.NoTrans {
- if ul == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- bands := k
- if i+bands >= n {
- bands = n - i - 1
- }
- atmp := a[i*lda+1:]
- xtmp := x[i+1 : i+bands+1]
- var sum float32
- for j, v := range xtmp {
- sum += v * atmp[j]
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= a[i*lda]
- }
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- max := k + 1
- if i+max > n {
- max = n - i
- }
- atmp := a[i*lda:]
- var (
- jx int
- sum float32
- )
- for j := 1; j < max; j++ {
- jx += incX
- sum += x[ix+jx] * atmp[j]
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= atmp[0]
- }
- ix -= incX
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- bands := k
- if i-k < 0 {
- bands = i
- }
- atmp := a[i*lda+k-bands:]
- xtmp := x[i-bands : i]
- var sum float32
- for j, v := range xtmp {
- sum += v * atmp[j]
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= atmp[bands]
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- bands := k
- if i-k < 0 {
- bands = i
- }
- atmp := a[i*lda+k-bands:]
- var (
- sum float32
- jx int
- )
- for j := 0; j < bands; j++ {
- sum += x[ix-bands*incX+jx] * atmp[j]
- jx += incX
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= atmp[bands]
- }
- ix += incX
- }
- return
- }
- // Cases where a is transposed.
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- bands := k
- if i-k < 0 {
- bands = i
- }
- var sum float32
- for j := 0; j < bands; j++ {
- sum += x[i-bands+j] * a[(i-bands+j)*lda+bands-j]
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= a[i*lda]
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- bands := k
- if i-k < 0 {
- bands = i
- }
- var (
- sum float32
- jx int
- )
- for j := 0; j < bands; j++ {
- sum += x[ix-bands*incX+jx] * a[(i-bands+j)*lda+bands-j]
- jx += incX
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= a[i*lda]
- }
- ix += incX
- }
- return
- }
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- bands := k
- if i+bands >= n {
- bands = n - i - 1
- }
- var sum float32
- xtmp := x[i+1 : i+1+bands]
- for j, v := range xtmp {
- sum += v * a[(i+j+1)*lda+k-j-1]
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= a[i*lda+k]
- }
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- bands := k
- if i+bands >= n {
- bands = n - i - 1
- }
- var (
- sum float32
- jx int
- )
- for j := 0; j < bands; j++ {
- sum += x[ix+jx+incX] * a[(i+j+1)*lda+k-j-1]
- jx += incX
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= a[i*lda+k]
- }
- ix -= incX
- }
- }
- // Ssbmv performs the matrix-vector operation
- // y = alpha * A * x + beta * y
- // where A is an n×n symmetric band matrix with k super-diagonals, x and y are
- // vectors, and alpha and beta are scalars.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Ssbmv(ul blas.Uplo, n, k int, alpha float32, a []float32, lda int, x []float32, incX int, beta float32, y []float32, incY int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if n < 0 {
- panic(nLT0)
- }
- if k < 0 {
- panic(kLT0)
- }
- if lda < k+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+k+1 {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- // Set up indexes
- lenX := n
- lenY := n
- var kx, ky int
- if incX < 0 {
- kx = -(lenX - 1) * incX
- }
- if incY < 0 {
- ky = -(lenY - 1) * incY
- }
- // Form y = beta * y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:n] {
- y[i] = 0
- }
- } else {
- f32.ScalUnitary(beta, y[:n])
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < n; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- if incY > 0 {
- f32.ScalInc(beta, y, uintptr(n), uintptr(incY))
- } else {
- f32.ScalInc(beta, y, uintptr(n), uintptr(-incY))
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- if ul == blas.Upper {
- if incX == 1 {
- iy := ky
- for i := 0; i < n; i++ {
- atmp := a[i*lda:]
- tmp := alpha * x[i]
- sum := tmp * atmp[0]
- u := min(k, n-i-1)
- jy := incY
- for j := 1; j <= u; j++ {
- v := atmp[j]
- sum += alpha * x[i+j] * v
- y[iy+jy] += tmp * v
- jy += incY
- }
- y[iy] += sum
- iy += incY
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- atmp := a[i*lda:]
- tmp := alpha * x[ix]
- sum := tmp * atmp[0]
- u := min(k, n-i-1)
- jx := incX
- jy := incY
- for j := 1; j <= u; j++ {
- v := atmp[j]
- sum += alpha * x[ix+jx] * v
- y[iy+jy] += tmp * v
- jx += incX
- jy += incY
- }
- y[iy] += sum
- ix += incX
- iy += incY
- }
- return
- }
- // Casses where a has bands below the diagonal.
- if incX == 1 {
- iy := ky
- for i := 0; i < n; i++ {
- l := max(0, k-i)
- tmp := alpha * x[i]
- jy := l * incY
- atmp := a[i*lda:]
- for j := l; j < k; j++ {
- v := atmp[j]
- y[iy] += alpha * v * x[i-k+j]
- y[iy-k*incY+jy] += tmp * v
- jy += incY
- }
- y[iy] += tmp * atmp[k]
- iy += incY
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- l := max(0, k-i)
- tmp := alpha * x[ix]
- jx := l * incX
- jy := l * incY
- atmp := a[i*lda:]
- for j := l; j < k; j++ {
- v := atmp[j]
- y[iy] += alpha * v * x[ix-k*incX+jx]
- y[iy-k*incY+jy] += tmp * v
- jx += incX
- jy += incY
- }
- y[iy] += tmp * atmp[k]
- ix += incX
- iy += incY
- }
- }
- // Ssyr performs the symmetric rank-one update
- // A += alpha * x * xᵀ
- // where A is an n×n symmetric matrix, and x is a vector.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Ssyr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, a []float32, lda int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- lenX := n
- var kx int
- if incX < 0 {
- kx = -(lenX - 1) * incX
- }
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- tmp := x[i] * alpha
- if tmp != 0 {
- atmp := a[i*lda+i : i*lda+n]
- xtmp := x[i:n]
- for j, v := range xtmp {
- atmp[j] += v * tmp
- }
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- tmp := x[ix] * alpha
- if tmp != 0 {
- jx := ix
- atmp := a[i*lda:]
- for j := i; j < n; j++ {
- atmp[j] += x[jx] * tmp
- jx += incX
- }
- }
- ix += incX
- }
- return
- }
- // Cases where a is lower triangular.
- if incX == 1 {
- for i := 0; i < n; i++ {
- tmp := x[i] * alpha
- if tmp != 0 {
- atmp := a[i*lda:]
- xtmp := x[:i+1]
- for j, v := range xtmp {
- atmp[j] += tmp * v
- }
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- tmp := x[ix] * alpha
- if tmp != 0 {
- atmp := a[i*lda:]
- jx := kx
- for j := 0; j < i+1; j++ {
- atmp[j] += tmp * x[jx]
- jx += incX
- }
- }
- ix += incX
- }
- }
- // Ssyr2 performs the symmetric rank-two update
- // A += alpha * x * yᵀ + alpha * y * xᵀ
- // where A is an n×n symmetric matrix, x and y are vectors, and alpha is a scalar.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Ssyr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, a []float32, lda int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- var ky, kx int
- if incY < 0 {
- ky = -(n - 1) * incY
- }
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- if ul == blas.Upper {
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- xi := x[i]
- yi := y[i]
- atmp := a[i*lda:]
- for j := i; j < n; j++ {
- atmp[j] += alpha * (xi*y[j] + x[j]*yi)
- }
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- jx := kx + i*incX
- jy := ky + i*incY
- xi := x[ix]
- yi := y[iy]
- atmp := a[i*lda:]
- for j := i; j < n; j++ {
- atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
- jx += incX
- jy += incY
- }
- ix += incX
- iy += incY
- }
- return
- }
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- xi := x[i]
- yi := y[i]
- atmp := a[i*lda:]
- for j := 0; j <= i; j++ {
- atmp[j] += alpha * (xi*y[j] + x[j]*yi)
- }
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- jx := kx
- jy := ky
- xi := x[ix]
- yi := y[iy]
- atmp := a[i*lda:]
- for j := 0; j <= i; j++ {
- atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
- jx += incX
- jy += incY
- }
- ix += incX
- iy += incY
- }
- }
- // Stpsv solves one of the systems of equations
- // A * x = b if tA == blas.NoTrans
- // Aᵀ * x = b if tA == blas.Trans or blas.ConjTrans
- // where A is an n×n triangular matrix in packed format, and x and b are vectors.
- //
- // At entry to the function, x contains the values of b, and the result is
- // stored in-place into x.
- //
- // No test for singularity or near-singularity is included in this
- // routine. Such tests must be performed before calling this routine.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Stpsv(ul blas.Uplo, tA blas.Transpose, d blas.Diag, n int, ap []float32, x []float32, incX int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
- panic(badTranspose)
- }
- if d != blas.NonUnit && d != blas.Unit {
- panic(badDiag)
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- var kx int
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- nonUnit := d == blas.NonUnit
- var offset int // Offset is the index of (i,i)
- if tA == blas.NoTrans {
- if ul == blas.Upper {
- offset = n*(n+1)/2 - 1
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- atmp := ap[offset+1 : offset+n-i]
- xtmp := x[i+1:]
- var sum float32
- for j, v := range atmp {
- sum += v * xtmp[j]
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= ap[offset]
- }
- offset -= n - i + 1
- }
- return
- }
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- atmp := ap[offset+1 : offset+n-i]
- jx := kx + (i+1)*incX
- var sum float32
- for _, v := range atmp {
- sum += v * x[jx]
- jx += incX
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= ap[offset]
- }
- ix -= incX
- offset -= n - i + 1
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- atmp := ap[offset-i : offset]
- var sum float32
- for j, v := range atmp {
- sum += v * x[j]
- }
- x[i] -= sum
- if nonUnit {
- x[i] /= ap[offset]
- }
- offset += i + 2
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- jx := kx
- atmp := ap[offset-i : offset]
- var sum float32
- for _, v := range atmp {
- sum += v * x[jx]
- jx += incX
- }
- x[ix] -= sum
- if nonUnit {
- x[ix] /= ap[offset]
- }
- ix += incX
- offset += i + 2
- }
- return
- }
- // Cases where ap is transposed.
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if nonUnit {
- x[i] /= ap[offset]
- }
- xi := x[i]
- atmp := ap[offset+1 : offset+n-i]
- xtmp := x[i+1:]
- for j, v := range atmp {
- xtmp[j] -= v * xi
- }
- offset += n - i
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- if nonUnit {
- x[ix] /= ap[offset]
- }
- xix := x[ix]
- atmp := ap[offset+1 : offset+n-i]
- jx := kx + (i+1)*incX
- for _, v := range atmp {
- x[jx] -= v * xix
- jx += incX
- }
- ix += incX
- offset += n - i
- }
- return
- }
- if incX == 1 {
- offset = n*(n+1)/2 - 1
- for i := n - 1; i >= 0; i-- {
- if nonUnit {
- x[i] /= ap[offset]
- }
- xi := x[i]
- atmp := ap[offset-i : offset]
- for j, v := range atmp {
- x[j] -= v * xi
- }
- offset -= i + 1
- }
- return
- }
- ix := kx + (n-1)*incX
- offset = n*(n+1)/2 - 1
- for i := n - 1; i >= 0; i-- {
- if nonUnit {
- x[ix] /= ap[offset]
- }
- xix := x[ix]
- atmp := ap[offset-i : offset]
- jx := kx
- for _, v := range atmp {
- x[jx] -= v * xix
- jx += incX
- }
- ix -= incX
- offset -= i + 1
- }
- }
- // Sspmv performs the matrix-vector operation
- // y = alpha * A * x + beta * y
- // where A is an n×n symmetric matrix in packed format, x and y are vectors,
- // and alpha and beta are scalars.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Sspmv(ul blas.Uplo, n int, alpha float32, ap []float32, x []float32, incX int, beta float32, y []float32, incY int) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- // Set up start points
- var kx, ky int
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- if incY < 0 {
- ky = -(n - 1) * incY
- }
- // Form y = beta * y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:n] {
- y[i] = 0
- }
- } else {
- f32.ScalUnitary(beta, y[:n])
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < n; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- if incY > 0 {
- f32.ScalInc(beta, y, uintptr(n), uintptr(incY))
- } else {
- f32.ScalInc(beta, y, uintptr(n), uintptr(-incY))
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- if n == 1 {
- y[0] += alpha * ap[0] * x[0]
- return
- }
- var offset int // Offset is the index of (i,i).
- if ul == blas.Upper {
- if incX == 1 {
- iy := ky
- for i := 0; i < n; i++ {
- xv := x[i] * alpha
- sum := ap[offset] * x[i]
- atmp := ap[offset+1 : offset+n-i]
- xtmp := x[i+1:]
- jy := ky + (i+1)*incY
- for j, v := range atmp {
- sum += v * xtmp[j]
- y[jy] += v * xv
- jy += incY
- }
- y[iy] += alpha * sum
- iy += incY
- offset += n - i
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- xv := x[ix] * alpha
- sum := ap[offset] * x[ix]
- atmp := ap[offset+1 : offset+n-i]
- jx := kx + (i+1)*incX
- jy := ky + (i+1)*incY
- for _, v := range atmp {
- sum += v * x[jx]
- y[jy] += v * xv
- jx += incX
- jy += incY
- }
- y[iy] += alpha * sum
- ix += incX
- iy += incY
- offset += n - i
- }
- return
- }
- if incX == 1 {
- iy := ky
- for i := 0; i < n; i++ {
- xv := x[i] * alpha
- atmp := ap[offset-i : offset]
- jy := ky
- var sum float32
- for j, v := range atmp {
- sum += v * x[j]
- y[jy] += v * xv
- jy += incY
- }
- sum += ap[offset] * x[i]
- y[iy] += alpha * sum
- iy += incY
- offset += i + 2
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- xv := x[ix] * alpha
- atmp := ap[offset-i : offset]
- jx := kx
- jy := ky
- var sum float32
- for _, v := range atmp {
- sum += v * x[jx]
- y[jy] += v * xv
- jx += incX
- jy += incY
- }
- sum += ap[offset] * x[ix]
- y[iy] += alpha * sum
- ix += incX
- iy += incY
- offset += i + 2
- }
- }
- // Sspr performs the symmetric rank-one operation
- // A += alpha * x * xᵀ
- // where A is an n×n symmetric matrix in packed format, x is a vector, and
- // alpha is a scalar.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Sspr(ul blas.Uplo, n int, alpha float32, x []float32, incX int, ap []float32) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- lenX := n
- var kx int
- if incX < 0 {
- kx = -(lenX - 1) * incX
- }
- var offset int // Offset is the index of (i,i).
- if ul == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- atmp := ap[offset:]
- xv := alpha * x[i]
- xtmp := x[i:n]
- for j, v := range xtmp {
- atmp[j] += xv * v
- }
- offset += n - i
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- jx := kx + i*incX
- atmp := ap[offset:]
- xv := alpha * x[ix]
- for j := 0; j < n-i; j++ {
- atmp[j] += xv * x[jx]
- jx += incX
- }
- ix += incX
- offset += n - i
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- atmp := ap[offset-i:]
- xv := alpha * x[i]
- xtmp := x[:i+1]
- for j, v := range xtmp {
- atmp[j] += xv * v
- }
- offset += i + 2
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- jx := kx
- atmp := ap[offset-i:]
- xv := alpha * x[ix]
- for j := 0; j <= i; j++ {
- atmp[j] += xv * x[jx]
- jx += incX
- }
- ix += incX
- offset += i + 2
- }
- }
- // Sspr2 performs the symmetric rank-2 update
- // A += alpha * x * yᵀ + alpha * y * xᵀ
- // where A is an n×n symmetric matrix in packed format, x and y are vectors,
- // and alpha is a scalar.
- //
- // Float32 implementations are autogenerated and not directly tested.
- func (Implementation) Sspr2(ul blas.Uplo, n int, alpha float32, x []float32, incX int, y []float32, incY int, ap []float32) {
- if ul != blas.Lower && ul != blas.Upper {
- panic(badUplo)
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- var ky, kx int
- if incY < 0 {
- ky = -(n - 1) * incY
- }
- if incX < 0 {
- kx = -(n - 1) * incX
- }
- var offset int // Offset is the index of (i,i).
- if ul == blas.Upper {
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- atmp := ap[offset:]
- xi := x[i]
- yi := y[i]
- xtmp := x[i:n]
- ytmp := y[i:n]
- for j, v := range xtmp {
- atmp[j] += alpha * (xi*ytmp[j] + v*yi)
- }
- offset += n - i
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- jx := kx + i*incX
- jy := ky + i*incY
- atmp := ap[offset:]
- xi := x[ix]
- yi := y[iy]
- for j := 0; j < n-i; j++ {
- atmp[j] += alpha * (xi*y[jy] + x[jx]*yi)
- jx += incX
- jy += incY
- }
- ix += incX
- iy += incY
- offset += n - i
- }
- return
- }
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- atmp := ap[offset-i:]
- xi := x[i]
- yi := y[i]
- xtmp := x[:i+1]
- for j, v := range xtmp {
- atmp[j] += alpha * (xi*y[j] + v*yi)
- }
- offset += i + 2
- }
- return
- }
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- jx := kx
- jy := ky
- atmp := ap[offset-i:]
- for j := 0; j <= i; j++ {
- atmp[j] += alpha * (x[ix]*y[jy] + x[jx]*y[iy])
- jx += incX
- jy += incY
- }
- ix += incX
- iy += incY
- offset += i + 2
- }
- }
|