123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- /*
- Copyright 2020 Achilleas Tzenetopoulos.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- */
- package priorities
- import (
- "encoding/json"
- "fmt"
- "strings"
- _ "github.com/go-sql-driver/mysql"
- client "github.com/influxdata/influxdb1-client/v2"
- "k8s.io/klog"
- "k8s.io/kubernetes/pkg/scheduler/customcache"
- )
- var (
- customResourcePriority = &CustomAllocationPriority{"CustomResourceAllocation", customResourceScorer}
- //customResourcePriority = &CustomAllocationPriority{"CustomRequestedPriority", customResourceScorer}
- // LeastRequestedPriorityMap is a priority function that favors nodes with fewer requested resources.
- // It calculates the percentage of memory and CPU requested by pods scheduled on the node, and
- // prioritizes based on the minimum of the average of the fraction of requested to capacity.
- //
- // Details:
- // (cpu((capacity-sum(requested))*10/capacity) + memory((capacity-sum(requested))*10/capacity))/2
- CustomRequestedPriorityMap = customResourcePriority.PriorityMap
- )
- func customScoreFn(si scorerInput) float64 {
- return si.metrics["ipc"] / (si.metrics["mem_read"] + si.metrics["mem_write"])
- }
- func onlyIPC(metrics map[string]float64) float64 {
- return metrics["ipc"]
- }
- func onlyL3(metrics map[string]float64) float64 {
- return 1 / metrics["l3m"]
- }
- func onlyNrg(metrics map[string]float64) float64 {
- return 1 / metrics["procnrg"]
- }
- func calculateScore(si scorerInput,
- logicFn func(scorerInput) float64) float64 {
- res := logicFn(si)
- //klog.Infof("Has score (in float) %v\n", res)
- return res
- }
- func calculateWeightedAverage(response *client.Response,
- numberOfRows, numberOfMetrics int) (map[string]float64, error) {
- // initialize the metrics map with a constant size
- metrics := make(map[string]float64, numberOfMetrics)
- rows := response.Results[0].Series[0]
- for i := 1; i < len(rows.Columns); i++ {
- for j := 0; j < numberOfRows; j++ {
- val, err := rows.Values[j][i].(json.Number).Float64()
- if err != nil {
- klog.Infof("Error while calculating %v", rows.Columns[i])
- return nil, err
- }
- metrics[rows.Columns[i]] += val * float64(numberOfRows-j)
- }
- metrics[rows.Columns[i]] = metrics[rows.Columns[i]] / float64((numberOfRows * (numberOfRows + 1) / 2))
- //klog.Infof("%v : %v", rows.Columns[i], metrics[rows.Columns[i]])
- }
- // TODO better handling for the returning errors
- return metrics, nil
- }
- func customScoreInfluxDB(metrics []string, uuid string, socket,
- numberOfRows int, cfg Config, c client.Client) (map[string]float64, error) {
- // calculate the number of rows needed
- // i.e. 20sec / 0.5s interval => 40rows
- //numberOfRows := int(float32(time) / cfg.MonitoringSpecs.TimeInterval)
- // merge all the required columns
- columns := strings.Join(metrics, ", ")
- // build the coommand
- var command strings.Builder
- fmt.Fprintf(&command, "SELECT %s from socket_metrics where uuid = '%s' and socket_id='%d' order by time desc limit %d", columns, uuid, socket, numberOfRows)
- q := client.NewQuery(command.String(), cfg.Database.Name, "")
- response, err := c.Query(q)
- if err != nil {
- klog.Infof("Error while executing the query: %v", err.Error())
- return nil, err
- }
- // Calculate the average for the metrics provided
- return calculateWeightedAverage(response, numberOfRows, len(metrics))
- }
- func customResourceScorer(nodeName string) (float64, error) {
- cores, _ := Cores[nodeName]
- var results map[string]float64
- // Check the cache
- ipc, ok := customcache.LabCache.Cache[nodeName]["ipc"]
- if !ok {
- klog.Infof("IPC is nil")
- }
- reads, ok := customcache.LabCache.Cache[nodeName]["mem_read"]
- if !ok {
- klog.Infof("Memory Reads is nil")
- }
- writes, ok := customcache.LabCache.Cache[nodeName]["mem_write"]
- if !ok {
- klog.Infof("Memory Writes is nil")
- }
- c6res, ok := customcache.LabCache.Cache[nodeName]["c6res"]
- if !ok {
- klog.Infof("C6 state is nil")
- }
- // If the cache has value use it
- if ipc != -1 && reads != -1 && writes != -1 && c6res != -1 {
- results := map[string]float64{
- "ipc": ipc,
- "mem_read": reads,
- "mem_write": writes,
- }
- res := calculateScore(scorerInput{metrics: results}, customScoreFn)
- if sum := c6res * float64(len(cores)); sum < 1 {
- //klog.Infof("Average C6 is less than 1, so we get: %v", average["c6res"])
- res = res * c6res
- } else {
- res = res * 1
- }
- //Apply heterogeneity
- speed := links[Nodes[nodeName]][0] * links[Nodes[nodeName]][1]
- res = res * float64(speed)
- // Select Node
- klog.Infof("Node name %s, has score %v\n", nodeName, res)
- return res, nil
- }
- //read database information
- var cfg Config
- err := readFile(&cfg, "/etc/kubernetes/scheduler-monitoringDB.yaml")
- if err != nil {
- return 0, err
- }
- /*-------------------------------------
- //TODO read also nodes to uuid mappings for EVOLVE
- -------------------------------------*/
- // InfluxDB
- c, err := connectToInfluxDB(cfg)
- if err != nil {
- return 0, err
- }
- // close the connection in the end of execution
- defer c.Close()
- //Get the uuid of this node in order to query in the database
- curr_uuid, ok := Nodes[nodeName]
- socket, _ := Sockets[nodeName]
- // cores, _ := Cores[nodeName]
- if ok {
- metrics := []string{"c6res"}
- time := 20
- numberOfRows := int(float32(time) / cfg.MonitoringSpecs.TimeInterval)
- // Define Core availability
- r, err := queryInfluxDbCores(metrics, curr_uuid, socket, numberOfRows, cfg, c, cores)
- if err != nil {
- klog.Infof("Error in querying or calculating core availability in the first stage: %v", err.Error())
- }
- average, err := calculateWeightedAverageCores(r, numberOfRows, len(metrics), len(cores))
- if err != nil {
- klog.Infof("Error defining core availability")
- }
- // Select Socket
- results, err = customScoreInfluxDB([]string{"ipc", "mem_read", "mem_write"}, curr_uuid, socket, numberOfRows, cfg, c)
- if err != nil {
- klog.Infof("Error in querying or calculating average for the custom score in the first stage: %v", err.Error())
- return 0, nil
- }
- res := calculateScore(scorerInput{metrics: results}, customScoreFn)
- //klog.Infof("Node: %v\t res before: %v", nodeName, res)
- if sum := average["c6res"] * float64(len(cores)); sum < 1 {
- //klog.Infof("Average C6 is less than 1, so we get: %v", average["c6res"])
- res = res * average["c6res"]
- } else {
- res = res * 1
- }
- //Update the cache with the new metrics
- err = customcache.LabCache.UpdateCache(results, average["c6res"], nodeName)
- if err != nil {
- klog.Infof(err.Error())
- } else {
- klog.Infof("Cache updated successfully for %v", nodeName)
- }
- //Apply heterogeneity
- speed := links[Nodes[nodeName]][0] * links[Nodes[nodeName]][1]
- res = res * float64(speed)
- // Select Node
- klog.Infof("Node name %s, has score %v\n", nodeName, res)
- return res, nil
- } else {
- klog.Infof("Error finding the uuid: %v", ok)
- return 0, nil
- }
- }
- // WARNING
- // c6res is not a dependable metric for isnpecting core availability
- // Some Systems use higher core states (e.g c7res)
- // func findAvailability(response *client.Response, numberOfMetrics, numberOfRows, numberOfCores int, floor float64) (map[string]float64, error) {
- // // initialize the metrics map with a constant size
- // metrics := make(map[string]float64, numberOfMetrics)
- // rows := response.Results[0].Series[0]
- // for i := 1; i < len(rows.Columns); i++ {
- // //klog.Infof("Name of column %v : %v\nrange of values: %v\nnumber of rows: %v\nnumber of cores %v\n", i, rows.Columns[i], len(rows.Values), numberOfRows, numberOfCores)
- // for j := 0; j < numberOfRows; j++ {
- // //avg, max := 0.0, 0.0
- // for k := 0; k < numberOfCores; k++ {
- // val, err := rows.Values[j*numberOfCores+k][i].(json.Number).Float64()
- // if err != nil {
- // klog.Infof("Error while calculating %v", rows.Columns[i])
- // return false, err
- // }
- // // if val > floor {
- // // return true, nil
- // // }
- // // sum += val
- // //avg += val / float64(numberOfCores)
- // avg += val
- // }
- // metrics[rows.Columns[i]] += avg * float64(numberOfRows-j)
- // }
- // metrics[rows.Columns[i]] = metrics[rows.Columns[i]] / float64((numberOfRows * (numberOfRows + 1) / 2))
- // if metrics[row.Columns[i]] > 1 {
- // return true, nil
- // }
- // //klog.Infof("%v : %v", rows.Columns[i], metrics[rows.Columns[i]])
- // }
- // // TODO better handling for the returning errors
- // return false, nil
- // }
|