/* Copyright 2017 The Kubernetes Authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // The Controller sets tainted annotations on nodes. // Tainted nodes should not be used for new work loads and // some effort should be given to getting existing work // loads off of tainted nodes. package nodelifecycle import ( "context" "fmt" "strings" "sync" "time" "k8s.io/klog" coordv1 "k8s.io/api/coordination/v1" v1 "k8s.io/api/core/v1" apiequality "k8s.io/apimachinery/pkg/api/equality" apierrors "k8s.io/apimachinery/pkg/api/errors" metav1 "k8s.io/apimachinery/pkg/apis/meta/v1" "k8s.io/apimachinery/pkg/labels" utilruntime "k8s.io/apimachinery/pkg/util/runtime" "k8s.io/apimachinery/pkg/util/wait" utilfeature "k8s.io/apiserver/pkg/util/feature" appsv1informers "k8s.io/client-go/informers/apps/v1" coordinformers "k8s.io/client-go/informers/coordination/v1" coreinformers "k8s.io/client-go/informers/core/v1" clientset "k8s.io/client-go/kubernetes" "k8s.io/client-go/kubernetes/scheme" v1core "k8s.io/client-go/kubernetes/typed/core/v1" appsv1listers "k8s.io/client-go/listers/apps/v1" coordlisters "k8s.io/client-go/listers/coordination/v1" corelisters "k8s.io/client-go/listers/core/v1" "k8s.io/client-go/tools/cache" "k8s.io/client-go/tools/record" "k8s.io/client-go/util/flowcontrol" "k8s.io/client-go/util/workqueue" "k8s.io/component-base/metrics/prometheus/ratelimiter" "k8s.io/kubernetes/pkg/controller" "k8s.io/kubernetes/pkg/controller/nodelifecycle/scheduler" nodeutil "k8s.io/kubernetes/pkg/controller/util/node" kubefeatures "k8s.io/kubernetes/pkg/features" kubeletapis "k8s.io/kubernetes/pkg/kubelet/apis" utilnode "k8s.io/kubernetes/pkg/util/node" taintutils "k8s.io/kubernetes/pkg/util/taints" ) func init() { // Register prometheus metrics Register() } var ( // UnreachableTaintTemplate is the taint for when a node becomes unreachable. UnreachableTaintTemplate = &v1.Taint{ Key: v1.TaintNodeUnreachable, Effect: v1.TaintEffectNoExecute, } // NotReadyTaintTemplate is the taint for when a node is not ready for // executing pods NotReadyTaintTemplate = &v1.Taint{ Key: v1.TaintNodeNotReady, Effect: v1.TaintEffectNoExecute, } // map {NodeConditionType: {ConditionStatus: TaintKey}} // represents which NodeConditionType under which ConditionStatus should be // tainted with which TaintKey // for certain NodeConditionType, there are multiple {ConditionStatus,TaintKey} pairs nodeConditionToTaintKeyStatusMap = map[v1.NodeConditionType]map[v1.ConditionStatus]string{ v1.NodeReady: { v1.ConditionFalse: v1.TaintNodeNotReady, v1.ConditionUnknown: v1.TaintNodeUnreachable, }, v1.NodeMemoryPressure: { v1.ConditionTrue: v1.TaintNodeMemoryPressure, }, v1.NodeDiskPressure: { v1.ConditionTrue: v1.TaintNodeDiskPressure, }, v1.NodeNetworkUnavailable: { v1.ConditionTrue: v1.TaintNodeNetworkUnavailable, }, v1.NodePIDPressure: { v1.ConditionTrue: v1.TaintNodePIDPressure, }, } taintKeyToNodeConditionMap = map[string]v1.NodeConditionType{ v1.TaintNodeNotReady: v1.NodeReady, v1.TaintNodeUnreachable: v1.NodeReady, v1.TaintNodeNetworkUnavailable: v1.NodeNetworkUnavailable, v1.TaintNodeMemoryPressure: v1.NodeMemoryPressure, v1.TaintNodeDiskPressure: v1.NodeDiskPressure, v1.TaintNodePIDPressure: v1.NodePIDPressure, } ) // ZoneState is the state of a given zone. type ZoneState string const ( stateInitial = ZoneState("Initial") stateNormal = ZoneState("Normal") stateFullDisruption = ZoneState("FullDisruption") statePartialDisruption = ZoneState("PartialDisruption") ) const ( // The amount of time the nodecontroller should sleep between retrying node health updates retrySleepTime = 20 * time.Millisecond nodeNameKeyIndex = "spec.nodeName" // podUpdateWorkerSizes assumes that in most cases pod will be handled by monitorNodeHealth pass. // Pod update workes will only handle lagging cache pods. 4 workes should be enough. podUpdateWorkerSize = 4 ) // labelReconcileInfo lists Node labels to reconcile, and how to reconcile them. // primaryKey and secondaryKey are keys of labels to reconcile. // - If both keys exist, but their values don't match. Use the value from the // primaryKey as the source of truth to reconcile. // - If ensureSecondaryExists is true, and the secondaryKey does not // exist, secondaryKey will be added with the value of the primaryKey. var labelReconcileInfo = []struct { primaryKey string secondaryKey string ensureSecondaryExists bool }{ { // Reconcile the beta and the stable OS label using the beta label as // the source of truth. // TODO(#73084): switch to using the stable label as the source of // truth in v1.18. primaryKey: kubeletapis.LabelOS, secondaryKey: v1.LabelOSStable, ensureSecondaryExists: true, }, { // Reconcile the beta and the stable arch label using the beta label as // the source of truth. // TODO(#73084): switch to using the stable label as the source of // truth in v1.18. primaryKey: kubeletapis.LabelArch, secondaryKey: v1.LabelArchStable, ensureSecondaryExists: true, }, } type nodeHealthData struct { probeTimestamp metav1.Time readyTransitionTimestamp metav1.Time status *v1.NodeStatus lease *coordv1.Lease } func (n *nodeHealthData) deepCopy() *nodeHealthData { if n == nil { return nil } return &nodeHealthData{ probeTimestamp: n.probeTimestamp, readyTransitionTimestamp: n.readyTransitionTimestamp, status: n.status.DeepCopy(), lease: n.lease.DeepCopy(), } } type nodeHealthMap struct { lock sync.RWMutex nodeHealths map[string]*nodeHealthData } func newNodeHealthMap() *nodeHealthMap { return &nodeHealthMap{ nodeHealths: make(map[string]*nodeHealthData), } } // getDeepCopy - returns copy of node health data. // It prevents data being changed after retrieving it from the map. func (n *nodeHealthMap) getDeepCopy(name string) *nodeHealthData { n.lock.RLock() defer n.lock.RUnlock() return n.nodeHealths[name].deepCopy() } func (n *nodeHealthMap) set(name string, data *nodeHealthData) { n.lock.Lock() defer n.lock.Unlock() n.nodeHealths[name] = data } type podUpdateItem struct { namespace string name string } type evictionStatus int const ( unmarked = iota toBeEvicted evicted ) // nodeEvictionMap stores evictionStatus data for each node. type nodeEvictionMap struct { lock sync.Mutex nodeEvictions map[string]evictionStatus } func newNodeEvictionMap() *nodeEvictionMap { return &nodeEvictionMap{ nodeEvictions: make(map[string]evictionStatus), } } func (n *nodeEvictionMap) registerNode(nodeName string) { n.lock.Lock() defer n.lock.Unlock() n.nodeEvictions[nodeName] = unmarked } func (n *nodeEvictionMap) unregisterNode(nodeName string) { n.lock.Lock() defer n.lock.Unlock() delete(n.nodeEvictions, nodeName) } func (n *nodeEvictionMap) setStatus(nodeName string, status evictionStatus) bool { n.lock.Lock() defer n.lock.Unlock() if _, exists := n.nodeEvictions[nodeName]; !exists { return false } n.nodeEvictions[nodeName] = status return true } func (n *nodeEvictionMap) getStatus(nodeName string) (evictionStatus, bool) { n.lock.Lock() defer n.lock.Unlock() if _, exists := n.nodeEvictions[nodeName]; !exists { return unmarked, false } return n.nodeEvictions[nodeName], true } // Controller is the controller that manages node's life cycle. type Controller struct { taintManager *scheduler.NoExecuteTaintManager podLister corelisters.PodLister podInformerSynced cache.InformerSynced kubeClient clientset.Interface // This timestamp is to be used instead of LastProbeTime stored in Condition. We do this // to avoid the problem with time skew across the cluster. now func() metav1.Time enterPartialDisruptionFunc func(nodeNum int) float32 enterFullDisruptionFunc func(nodeNum int) float32 computeZoneStateFunc func(nodeConditions []*v1.NodeCondition) (int, ZoneState) knownNodeSet map[string]*v1.Node // per Node map storing last observed health together with a local time when it was observed. nodeHealthMap *nodeHealthMap // evictorLock protects zonePodEvictor and zoneNoExecuteTainter. // TODO(#83954): API calls shouldn't be executed under the lock. evictorLock sync.Mutex nodeEvictionMap *nodeEvictionMap // workers that evicts pods from unresponsive nodes. zonePodEvictor map[string]*scheduler.RateLimitedTimedQueue // workers that are responsible for tainting nodes. zoneNoExecuteTainter map[string]*scheduler.RateLimitedTimedQueue nodesToRetry sync.Map zoneStates map[string]ZoneState daemonSetStore appsv1listers.DaemonSetLister daemonSetInformerSynced cache.InformerSynced leaseLister coordlisters.LeaseLister leaseInformerSynced cache.InformerSynced nodeLister corelisters.NodeLister nodeInformerSynced cache.InformerSynced getPodsAssignedToNode func(nodeName string) ([]*v1.Pod, error) recorder record.EventRecorder // Value controlling Controller monitoring period, i.e. how often does Controller // check node health signal posted from kubelet. This value should be lower than // nodeMonitorGracePeriod. // TODO: Change node health monitor to watch based. nodeMonitorPeriod time.Duration // When node is just created, e.g. cluster bootstrap or node creation, we give // a longer grace period. nodeStartupGracePeriod time.Duration // Controller will not proactively sync node health, but will monitor node // health signal updated from kubelet. There are 2 kinds of node healthiness // signals: NodeStatus and NodeLease. NodeLease signal is generated only when // NodeLease feature is enabled. If it doesn't receive update for this amount // of time, it will start posting "NodeReady==ConditionUnknown". The amount of // time before which Controller start evicting pods is controlled via flag // 'pod-eviction-timeout'. // Note: be cautious when changing the constant, it must work with // nodeStatusUpdateFrequency in kubelet and renewInterval in NodeLease // controller. The node health signal update frequency is the minimal of the // two. // There are several constraints: // 1. nodeMonitorGracePeriod must be N times more than the node health signal // update frequency, where N means number of retries allowed for kubelet to // post node status/lease. It is pointless to make nodeMonitorGracePeriod // be less than the node health signal update frequency, since there will // only be fresh values from Kubelet at an interval of node health signal // update frequency. The constant must be less than podEvictionTimeout. // 2. nodeMonitorGracePeriod can't be too large for user experience - larger // value takes longer for user to see up-to-date node health. nodeMonitorGracePeriod time.Duration podEvictionTimeout time.Duration evictionLimiterQPS float32 secondaryEvictionLimiterQPS float32 largeClusterThreshold int32 unhealthyZoneThreshold float32 // if set to true Controller will start TaintManager that will evict Pods from // tainted nodes, if they're not tolerated. runTaintManager bool // if set to true Controller will taint Nodes with 'TaintNodeNotReady' and 'TaintNodeUnreachable' // taints instead of evicting Pods itself. useTaintBasedEvictions bool nodeUpdateQueue workqueue.Interface podUpdateQueue workqueue.RateLimitingInterface } // NewNodeLifecycleController returns a new taint controller. func NewNodeLifecycleController( leaseInformer coordinformers.LeaseInformer, podInformer coreinformers.PodInformer, nodeInformer coreinformers.NodeInformer, daemonSetInformer appsv1informers.DaemonSetInformer, kubeClient clientset.Interface, nodeMonitorPeriod time.Duration, nodeStartupGracePeriod time.Duration, nodeMonitorGracePeriod time.Duration, podEvictionTimeout time.Duration, evictionLimiterQPS float32, secondaryEvictionLimiterQPS float32, largeClusterThreshold int32, unhealthyZoneThreshold float32, runTaintManager bool, useTaintBasedEvictions bool, ) (*Controller, error) { if kubeClient == nil { klog.Fatalf("kubeClient is nil when starting Controller") } eventBroadcaster := record.NewBroadcaster() recorder := eventBroadcaster.NewRecorder(scheme.Scheme, v1.EventSource{Component: "node-controller"}) eventBroadcaster.StartLogging(klog.Infof) klog.Infof("Sending events to api server.") eventBroadcaster.StartRecordingToSink( &v1core.EventSinkImpl{ Interface: v1core.New(kubeClient.CoreV1().RESTClient()).Events(""), }) if kubeClient.CoreV1().RESTClient().GetRateLimiter() != nil { ratelimiter.RegisterMetricAndTrackRateLimiterUsage("node_lifecycle_controller", kubeClient.CoreV1().RESTClient().GetRateLimiter()) } nc := &Controller{ kubeClient: kubeClient, now: metav1.Now, knownNodeSet: make(map[string]*v1.Node), nodeHealthMap: newNodeHealthMap(), nodeEvictionMap: newNodeEvictionMap(), recorder: recorder, nodeMonitorPeriod: nodeMonitorPeriod, nodeStartupGracePeriod: nodeStartupGracePeriod, nodeMonitorGracePeriod: nodeMonitorGracePeriod, zonePodEvictor: make(map[string]*scheduler.RateLimitedTimedQueue), zoneNoExecuteTainter: make(map[string]*scheduler.RateLimitedTimedQueue), nodesToRetry: sync.Map{}, zoneStates: make(map[string]ZoneState), podEvictionTimeout: podEvictionTimeout, evictionLimiterQPS: evictionLimiterQPS, secondaryEvictionLimiterQPS: secondaryEvictionLimiterQPS, largeClusterThreshold: largeClusterThreshold, unhealthyZoneThreshold: unhealthyZoneThreshold, runTaintManager: runTaintManager, useTaintBasedEvictions: useTaintBasedEvictions && runTaintManager, nodeUpdateQueue: workqueue.NewNamed("node_lifecycle_controller"), podUpdateQueue: workqueue.NewNamedRateLimitingQueue(workqueue.DefaultControllerRateLimiter(), "node_lifecycle_controller_pods"), } if useTaintBasedEvictions { klog.Infof("Controller is using taint based evictions.") } nc.enterPartialDisruptionFunc = nc.ReducedQPSFunc nc.enterFullDisruptionFunc = nc.HealthyQPSFunc nc.computeZoneStateFunc = nc.ComputeZoneState podInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: func(obj interface{}) { pod := obj.(*v1.Pod) nc.podUpdated(nil, pod) if nc.taintManager != nil { nc.taintManager.PodUpdated(nil, pod) } }, UpdateFunc: func(prev, obj interface{}) { prevPod := prev.(*v1.Pod) newPod := obj.(*v1.Pod) nc.podUpdated(prevPod, newPod) if nc.taintManager != nil { nc.taintManager.PodUpdated(prevPod, newPod) } }, DeleteFunc: func(obj interface{}) { pod, isPod := obj.(*v1.Pod) // We can get DeletedFinalStateUnknown instead of *v1.Pod here and we need to handle that correctly. if !isPod { deletedState, ok := obj.(cache.DeletedFinalStateUnknown) if !ok { klog.Errorf("Received unexpected object: %v", obj) return } pod, ok = deletedState.Obj.(*v1.Pod) if !ok { klog.Errorf("DeletedFinalStateUnknown contained non-Pod object: %v", deletedState.Obj) return } } nc.podUpdated(pod, nil) if nc.taintManager != nil { nc.taintManager.PodUpdated(pod, nil) } }, }) nc.podInformerSynced = podInformer.Informer().HasSynced podInformer.Informer().AddIndexers(cache.Indexers{ nodeNameKeyIndex: func(obj interface{}) ([]string, error) { pod, ok := obj.(*v1.Pod) if !ok { return []string{}, nil } if len(pod.Spec.NodeName) == 0 { return []string{}, nil } return []string{pod.Spec.NodeName}, nil }, }) podIndexer := podInformer.Informer().GetIndexer() nc.getPodsAssignedToNode = func(nodeName string) ([]*v1.Pod, error) { objs, err := podIndexer.ByIndex(nodeNameKeyIndex, nodeName) if err != nil { return nil, err } pods := make([]*v1.Pod, 0, len(objs)) for _, obj := range objs { pod, ok := obj.(*v1.Pod) if !ok { continue } pods = append(pods, pod) } return pods, nil } nc.podLister = podInformer.Lister() if nc.runTaintManager { podGetter := func(name, namespace string) (*v1.Pod, error) { return nc.podLister.Pods(namespace).Get(name) } nodeLister := nodeInformer.Lister() nodeGetter := func(name string) (*v1.Node, error) { return nodeLister.Get(name) } nc.taintManager = scheduler.NewNoExecuteTaintManager(kubeClient, podGetter, nodeGetter, nc.getPodsAssignedToNode) nodeInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: nodeutil.CreateAddNodeHandler(func(node *v1.Node) error { nc.taintManager.NodeUpdated(nil, node) return nil }), UpdateFunc: nodeutil.CreateUpdateNodeHandler(func(oldNode, newNode *v1.Node) error { nc.taintManager.NodeUpdated(oldNode, newNode) return nil }), DeleteFunc: nodeutil.CreateDeleteNodeHandler(func(node *v1.Node) error { nc.taintManager.NodeUpdated(node, nil) return nil }), }) } klog.Infof("Controller will reconcile labels.") nodeInformer.Informer().AddEventHandler(cache.ResourceEventHandlerFuncs{ AddFunc: nodeutil.CreateAddNodeHandler(func(node *v1.Node) error { nc.nodeUpdateQueue.Add(node.Name) nc.nodeEvictionMap.registerNode(node.Name) return nil }), UpdateFunc: nodeutil.CreateUpdateNodeHandler(func(_, newNode *v1.Node) error { nc.nodeUpdateQueue.Add(newNode.Name) return nil }), DeleteFunc: nodeutil.CreateDeleteNodeHandler(func(node *v1.Node) error { nc.nodesToRetry.Delete(node.Name) nc.nodeEvictionMap.unregisterNode(node.Name) return nil }), }) nc.leaseLister = leaseInformer.Lister() nc.leaseInformerSynced = leaseInformer.Informer().HasSynced nc.nodeLister = nodeInformer.Lister() nc.nodeInformerSynced = nodeInformer.Informer().HasSynced nc.daemonSetStore = daemonSetInformer.Lister() nc.daemonSetInformerSynced = daemonSetInformer.Informer().HasSynced return nc, nil } // Run starts an asynchronous loop that monitors the status of cluster nodes. func (nc *Controller) Run(stopCh <-chan struct{}) { defer utilruntime.HandleCrash() klog.Infof("Starting node controller") defer klog.Infof("Shutting down node controller") if !cache.WaitForNamedCacheSync("taint", stopCh, nc.leaseInformerSynced, nc.nodeInformerSynced, nc.podInformerSynced, nc.daemonSetInformerSynced) { return } if nc.runTaintManager { go nc.taintManager.Run(stopCh) } // Close node update queue to cleanup go routine. defer nc.nodeUpdateQueue.ShutDown() defer nc.podUpdateQueue.ShutDown() // Start workers to reconcile labels and/or update NoSchedule taint for nodes. for i := 0; i < scheduler.UpdateWorkerSize; i++ { // Thanks to "workqueue", each worker just need to get item from queue, because // the item is flagged when got from queue: if new event come, the new item will // be re-queued until "Done", so no more than one worker handle the same item and // no event missed. go wait.Until(nc.doNodeProcessingPassWorker, time.Second, stopCh) } for i := 0; i < podUpdateWorkerSize; i++ { go wait.Until(nc.doPodProcessingWorker, time.Second, stopCh) } if nc.useTaintBasedEvictions { // Handling taint based evictions. Because we don't want a dedicated logic in TaintManager for NC-originated // taints and we normally don't rate limit evictions caused by taints, we need to rate limit adding taints. go wait.Until(nc.doNoExecuteTaintingPass, scheduler.NodeEvictionPeriod, stopCh) } else { // Managing eviction of nodes: // When we delete pods off a node, if the node was not empty at the time we then // queue an eviction watcher. If we hit an error, retry deletion. go wait.Until(nc.doEvictionPass, scheduler.NodeEvictionPeriod, stopCh) } // Incorporate the results of node health signal pushed from kubelet to master. go wait.Until(func() { if err := nc.monitorNodeHealth(); err != nil { klog.Errorf("Error monitoring node health: %v", err) } }, nc.nodeMonitorPeriod, stopCh) <-stopCh } func (nc *Controller) doNodeProcessingPassWorker() { for { obj, shutdown := nc.nodeUpdateQueue.Get() // "nodeUpdateQueue" will be shutdown when "stopCh" closed; // we do not need to re-check "stopCh" again. if shutdown { return } nodeName := obj.(string) if err := nc.doNoScheduleTaintingPass(nodeName); err != nil { klog.Errorf("Failed to taint NoSchedule on node <%s>, requeue it: %v", nodeName, err) // TODO(k82cn): Add nodeName back to the queue } // TODO: re-evaluate whether there are any labels that need to be // reconcile in 1.19. Remove this function if it's no longer necessary. if err := nc.reconcileNodeLabels(nodeName); err != nil { klog.Errorf("Failed to reconcile labels for node <%s>, requeue it: %v", nodeName, err) // TODO(yujuhong): Add nodeName back to the queue } nc.nodeUpdateQueue.Done(nodeName) } } func (nc *Controller) doNoScheduleTaintingPass(nodeName string) error { node, err := nc.nodeLister.Get(nodeName) if err != nil { // If node not found, just ignore it. if apierrors.IsNotFound(err) { return nil } return err } // Map node's condition to Taints. var taints []v1.Taint for _, condition := range node.Status.Conditions { if taintMap, found := nodeConditionToTaintKeyStatusMap[condition.Type]; found { if taintKey, found := taintMap[condition.Status]; found { taints = append(taints, v1.Taint{ Key: taintKey, Effect: v1.TaintEffectNoSchedule, }) } } } if node.Spec.Unschedulable { // If unschedulable, append related taint. taints = append(taints, v1.Taint{ Key: v1.TaintNodeUnschedulable, Effect: v1.TaintEffectNoSchedule, }) } // Get exist taints of node. nodeTaints := taintutils.TaintSetFilter(node.Spec.Taints, func(t *v1.Taint) bool { // only NoSchedule taints are candidates to be compared with "taints" later if t.Effect != v1.TaintEffectNoSchedule { return false } // Find unschedulable taint of node. if t.Key == v1.TaintNodeUnschedulable { return true } // Find node condition taints of node. _, found := taintKeyToNodeConditionMap[t.Key] return found }) taintsToAdd, taintsToDel := taintutils.TaintSetDiff(taints, nodeTaints) // If nothing to add not delete, return true directly. if len(taintsToAdd) == 0 && len(taintsToDel) == 0 { return nil } if !nodeutil.SwapNodeControllerTaint(nc.kubeClient, taintsToAdd, taintsToDel, node) { return fmt.Errorf("failed to swap taints of node %+v", node) } return nil } func (nc *Controller) doNoExecuteTaintingPass() { nc.evictorLock.Lock() defer nc.evictorLock.Unlock() for k := range nc.zoneNoExecuteTainter { // Function should return 'false' and a time after which it should be retried, or 'true' if it shouldn't (it succeeded). nc.zoneNoExecuteTainter[k].Try(func(value scheduler.TimedValue) (bool, time.Duration) { node, err := nc.nodeLister.Get(value.Value) if apierrors.IsNotFound(err) { klog.Warningf("Node %v no longer present in nodeLister!", value.Value) return true, 0 } else if err != nil { klog.Warningf("Failed to get Node %v from the nodeLister: %v", value.Value, err) // retry in 50 millisecond return false, 50 * time.Millisecond } _, condition := nodeutil.GetNodeCondition(&node.Status, v1.NodeReady) // Because we want to mimic NodeStatus.Condition["Ready"] we make "unreachable" and "not ready" taints mutually exclusive. taintToAdd := v1.Taint{} oppositeTaint := v1.Taint{} switch condition.Status { case v1.ConditionFalse: taintToAdd = *NotReadyTaintTemplate oppositeTaint = *UnreachableTaintTemplate case v1.ConditionUnknown: taintToAdd = *UnreachableTaintTemplate oppositeTaint = *NotReadyTaintTemplate default: // It seems that the Node is ready again, so there's no need to taint it. klog.V(4).Infof("Node %v was in a taint queue, but it's ready now. Ignoring taint request.", value.Value) return true, 0 } result := nodeutil.SwapNodeControllerTaint(nc.kubeClient, []*v1.Taint{&taintToAdd}, []*v1.Taint{&oppositeTaint}, node) if result { //count the evictionsNumber zone := utilnode.GetZoneKey(node) evictionsNumber.WithLabelValues(zone).Inc() } return result, 0 }) } } func (nc *Controller) doEvictionPass() { nc.evictorLock.Lock() defer nc.evictorLock.Unlock() for k := range nc.zonePodEvictor { // Function should return 'false' and a time after which it should be retried, or 'true' if it shouldn't (it succeeded). nc.zonePodEvictor[k].Try(func(value scheduler.TimedValue) (bool, time.Duration) { node, err := nc.nodeLister.Get(value.Value) if apierrors.IsNotFound(err) { klog.Warningf("Node %v no longer present in nodeLister!", value.Value) } else if err != nil { klog.Warningf("Failed to get Node %v from the nodeLister: %v", value.Value, err) } nodeUID, _ := value.UID.(string) pods, err := nc.getPodsAssignedToNode(value.Value) if err != nil { utilruntime.HandleError(fmt.Errorf("unable to list pods from node %q: %v", value.Value, err)) return false, 0 } remaining, err := nodeutil.DeletePods(nc.kubeClient, pods, nc.recorder, value.Value, nodeUID, nc.daemonSetStore) if err != nil { // We are not setting eviction status here. // New pods will be handled by zonePodEvictor retry // instead of immediate pod eviction. utilruntime.HandleError(fmt.Errorf("unable to evict node %q: %v", value.Value, err)) return false, 0 } if !nc.nodeEvictionMap.setStatus(value.Value, evicted) { klog.V(2).Infof("node %v was unregistered in the meantime - skipping setting status", value.Value) } if remaining { klog.Infof("Pods awaiting deletion due to Controller eviction") } if node != nil { zone := utilnode.GetZoneKey(node) evictionsNumber.WithLabelValues(zone).Inc() } return true, 0 }) } } // monitorNodeHealth verifies node health are constantly updated by kubelet, and // if not, post "NodeReady==ConditionUnknown". // For nodes who are not ready or not reachable for a long period of time. // This function will taint them if TaintBasedEvictions feature was enabled. // Otherwise, it would evict it directly. func (nc *Controller) monitorNodeHealth() error { // We are listing nodes from local cache as we can tolerate some small delays // comparing to state from etcd and there is eventual consistency anyway. nodes, err := nc.nodeLister.List(labels.Everything()) if err != nil { return err } added, deleted, newZoneRepresentatives := nc.classifyNodes(nodes) for i := range newZoneRepresentatives { nc.addPodEvictorForNewZone(newZoneRepresentatives[i]) } for i := range added { klog.V(1).Infof("Controller observed a new Node: %#v", added[i].Name) nodeutil.RecordNodeEvent(nc.recorder, added[i].Name, string(added[i].UID), v1.EventTypeNormal, "RegisteredNode", fmt.Sprintf("Registered Node %v in Controller", added[i].Name)) nc.knownNodeSet[added[i].Name] = added[i] nc.addPodEvictorForNewZone(added[i]) if nc.useTaintBasedEvictions { nc.markNodeAsReachable(added[i]) } else { nc.cancelPodEviction(added[i]) } } for i := range deleted { klog.V(1).Infof("Controller observed a Node deletion: %v", deleted[i].Name) nodeutil.RecordNodeEvent(nc.recorder, deleted[i].Name, string(deleted[i].UID), v1.EventTypeNormal, "RemovingNode", fmt.Sprintf("Removing Node %v from Controller", deleted[i].Name)) delete(nc.knownNodeSet, deleted[i].Name) } zoneToNodeConditions := map[string][]*v1.NodeCondition{} for i := range nodes { var gracePeriod time.Duration var observedReadyCondition v1.NodeCondition var currentReadyCondition *v1.NodeCondition node := nodes[i].DeepCopy() if err := wait.PollImmediate(retrySleepTime, retrySleepTime*scheduler.NodeHealthUpdateRetry, func() (bool, error) { gracePeriod, observedReadyCondition, currentReadyCondition, err = nc.tryUpdateNodeHealth(node) if err == nil { return true, nil } name := node.Name node, err = nc.kubeClient.CoreV1().Nodes().Get(context.TODO(), name, metav1.GetOptions{}) if err != nil { klog.Errorf("Failed while getting a Node to retry updating node health. Probably Node %s was deleted.", name) return false, err } return false, nil }); err != nil { klog.Errorf("Update health of Node '%v' from Controller error: %v. "+ "Skipping - no pods will be evicted.", node.Name, err) continue } // Some nodes may be excluded from disruption checking if !isNodeExcludedFromDisruptionChecks(node) { zoneToNodeConditions[utilnode.GetZoneKey(node)] = append(zoneToNodeConditions[utilnode.GetZoneKey(node)], currentReadyCondition) } if currentReadyCondition != nil { pods, err := nc.getPodsAssignedToNode(node.Name) if err != nil { utilruntime.HandleError(fmt.Errorf("unable to list pods of node %v: %v", node.Name, err)) if currentReadyCondition.Status != v1.ConditionTrue && observedReadyCondition.Status == v1.ConditionTrue { // If error happened during node status transition (Ready -> NotReady) // we need to mark node for retry to force MarkPodsNotReady execution // in the next iteration. nc.nodesToRetry.Store(node.Name, struct{}{}) } continue } if nc.useTaintBasedEvictions { nc.processTaintBaseEviction(node, &observedReadyCondition) } else { if err := nc.processNoTaintBaseEviction(node, &observedReadyCondition, gracePeriod, pods); err != nil { utilruntime.HandleError(fmt.Errorf("unable to evict all pods from node %v: %v; queuing for retry", node.Name, err)) } } _, needsRetry := nc.nodesToRetry.Load(node.Name) switch { case currentReadyCondition.Status != v1.ConditionTrue && observedReadyCondition.Status == v1.ConditionTrue: // Report node event only once when status changed. nodeutil.RecordNodeStatusChange(nc.recorder, node, "NodeNotReady") fallthrough case needsRetry && observedReadyCondition.Status != v1.ConditionTrue: if err = nodeutil.MarkPodsNotReady(nc.kubeClient, pods, node.Name); err != nil { utilruntime.HandleError(fmt.Errorf("unable to mark all pods NotReady on node %v: %v; queuing for retry", node.Name, err)) nc.nodesToRetry.Store(node.Name, struct{}{}) continue } } } nc.nodesToRetry.Delete(node.Name) } nc.handleDisruption(zoneToNodeConditions, nodes) return nil } func (nc *Controller) processTaintBaseEviction(node *v1.Node, observedReadyCondition *v1.NodeCondition) { decisionTimestamp := nc.now() // Check eviction timeout against decisionTimestamp switch observedReadyCondition.Status { case v1.ConditionFalse: // We want to update the taint straight away if Node is already tainted with the UnreachableTaint if taintutils.TaintExists(node.Spec.Taints, UnreachableTaintTemplate) { taintToAdd := *NotReadyTaintTemplate if !nodeutil.SwapNodeControllerTaint(nc.kubeClient, []*v1.Taint{&taintToAdd}, []*v1.Taint{UnreachableTaintTemplate}, node) { klog.Errorf("Failed to instantly swap UnreachableTaint to NotReadyTaint. Will try again in the next cycle.") } } else if nc.markNodeForTainting(node) { klog.V(2).Infof("Node %v is NotReady as of %v. Adding it to the Taint queue.", node.Name, decisionTimestamp, ) } case v1.ConditionUnknown: // We want to update the taint straight away if Node is already tainted with the UnreachableTaint if taintutils.TaintExists(node.Spec.Taints, NotReadyTaintTemplate) { taintToAdd := *UnreachableTaintTemplate if !nodeutil.SwapNodeControllerTaint(nc.kubeClient, []*v1.Taint{&taintToAdd}, []*v1.Taint{NotReadyTaintTemplate}, node) { klog.Errorf("Failed to instantly swap NotReadyTaint to UnreachableTaint. Will try again in the next cycle.") } } else if nc.markNodeForTainting(node) { klog.V(2).Infof("Node %v is unresponsive as of %v. Adding it to the Taint queue.", node.Name, decisionTimestamp, ) } case v1.ConditionTrue: removed, err := nc.markNodeAsReachable(node) if err != nil { klog.Errorf("Failed to remove taints from node %v. Will retry in next iteration.", node.Name) } if removed { klog.V(2).Infof("Node %s is healthy again, removing all taints", node.Name) } } } func (nc *Controller) processNoTaintBaseEviction(node *v1.Node, observedReadyCondition *v1.NodeCondition, gracePeriod time.Duration, pods []*v1.Pod) error { decisionTimestamp := nc.now() nodeHealthData := nc.nodeHealthMap.getDeepCopy(node.Name) if nodeHealthData == nil { return fmt.Errorf("health data doesn't exist for node %q", node.Name) } // Check eviction timeout against decisionTimestamp switch observedReadyCondition.Status { case v1.ConditionFalse: if decisionTimestamp.After(nodeHealthData.readyTransitionTimestamp.Add(nc.podEvictionTimeout)) { enqueued, err := nc.evictPods(node, pods) if err != nil { return err } if enqueued { klog.V(2).Infof("Node is NotReady. Adding Pods on Node %s to eviction queue: %v is later than %v + %v", node.Name, decisionTimestamp, nodeHealthData.readyTransitionTimestamp, nc.podEvictionTimeout, ) } } case v1.ConditionUnknown: if decisionTimestamp.After(nodeHealthData.probeTimestamp.Add(nc.podEvictionTimeout)) { enqueued, err := nc.evictPods(node, pods) if err != nil { return err } if enqueued { klog.V(2).Infof("Node is unresponsive. Adding Pods on Node %s to eviction queues: %v is later than %v + %v", node.Name, decisionTimestamp, nodeHealthData.readyTransitionTimestamp, nc.podEvictionTimeout-gracePeriod, ) } } case v1.ConditionTrue: if nc.cancelPodEviction(node) { klog.V(2).Infof("Node %s is ready again, cancelled pod eviction", node.Name) } } return nil } // labelNodeDisruptionExclusion is a label on nodes that controls whether they are // excluded from being considered for disruption checks by the node controller. const labelNodeDisruptionExclusion = "node.kubernetes.io/exclude-disruption" func isNodeExcludedFromDisruptionChecks(node *v1.Node) bool { // DEPRECATED: will be removed in 1.19 if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.LegacyNodeRoleBehavior) { if legacyIsMasterNode(node.Name) { return true } } if utilfeature.DefaultFeatureGate.Enabled(kubefeatures.NodeDisruptionExclusion) { if _, ok := node.Labels[labelNodeDisruptionExclusion]; ok { return true } } return false } // legacyIsMasterNode returns true if given node is a registered master according // to the logic historically used for this function. This code path is deprecated // and the node disruption exclusion label should be used in the future. // This code will not be allowed to update to use the node-role label, since // node-roles may not be used for feature enablement. // DEPRECATED: Will be removed in 1.19 func legacyIsMasterNode(nodeName string) bool { // We are trying to capture "master(-...)?$" regexp. // However, using regexp.MatchString() results even in more than 35% // of all space allocations in ControllerManager spent in this function. // That's why we are trying to be a bit smarter. if strings.HasSuffix(nodeName, "master") { return true } if len(nodeName) >= 10 { return strings.HasSuffix(nodeName[:len(nodeName)-3], "master-") } return false } // tryUpdateNodeHealth checks a given node's conditions and tries to update it. Returns grace period to // which given node is entitled, state of current and last observed Ready Condition, and an error if it occurred. func (nc *Controller) tryUpdateNodeHealth(node *v1.Node) (time.Duration, v1.NodeCondition, *v1.NodeCondition, error) { nodeHealth := nc.nodeHealthMap.getDeepCopy(node.Name) defer func() { nc.nodeHealthMap.set(node.Name, nodeHealth) }() var gracePeriod time.Duration var observedReadyCondition v1.NodeCondition _, currentReadyCondition := nodeutil.GetNodeCondition(&node.Status, v1.NodeReady) if currentReadyCondition == nil { // If ready condition is nil, then kubelet (or nodecontroller) never posted node status. // A fake ready condition is created, where LastHeartbeatTime and LastTransitionTime is set // to node.CreationTimestamp to avoid handle the corner case. observedReadyCondition = v1.NodeCondition{ Type: v1.NodeReady, Status: v1.ConditionUnknown, LastHeartbeatTime: node.CreationTimestamp, LastTransitionTime: node.CreationTimestamp, } gracePeriod = nc.nodeStartupGracePeriod if nodeHealth != nil { nodeHealth.status = &node.Status } else { nodeHealth = &nodeHealthData{ status: &node.Status, probeTimestamp: node.CreationTimestamp, readyTransitionTimestamp: node.CreationTimestamp, } } } else { // If ready condition is not nil, make a copy of it, since we may modify it in place later. observedReadyCondition = *currentReadyCondition gracePeriod = nc.nodeMonitorGracePeriod } // There are following cases to check: // - both saved and new status have no Ready Condition set - we leave everything as it is, // - saved status have no Ready Condition, but current one does - Controller was restarted with Node data already present in etcd, // - saved status have some Ready Condition, but current one does not - it's an error, but we fill it up because that's probably a good thing to do, // - both saved and current statuses have Ready Conditions and they have the same LastProbeTime - nothing happened on that Node, it may be // unresponsive, so we leave it as it is, // - both saved and current statuses have Ready Conditions, they have different LastProbeTimes, but the same Ready Condition State - // everything's in order, no transition occurred, we update only probeTimestamp, // - both saved and current statuses have Ready Conditions, different LastProbeTimes and different Ready Condition State - // Ready Condition changed it state since we last seen it, so we update both probeTimestamp and readyTransitionTimestamp. // TODO: things to consider: // - if 'LastProbeTime' have gone back in time its probably an error, currently we ignore it, // - currently only correct Ready State transition outside of Node Controller is marking it ready by Kubelet, we don't check // if that's the case, but it does not seem necessary. var savedCondition *v1.NodeCondition var savedLease *coordv1.Lease if nodeHealth != nil { _, savedCondition = nodeutil.GetNodeCondition(nodeHealth.status, v1.NodeReady) savedLease = nodeHealth.lease } if nodeHealth == nil { klog.Warningf("Missing timestamp for Node %s. Assuming now as a timestamp.", node.Name) nodeHealth = &nodeHealthData{ status: &node.Status, probeTimestamp: nc.now(), readyTransitionTimestamp: nc.now(), } } else if savedCondition == nil && currentReadyCondition != nil { klog.V(1).Infof("Creating timestamp entry for newly observed Node %s", node.Name) nodeHealth = &nodeHealthData{ status: &node.Status, probeTimestamp: nc.now(), readyTransitionTimestamp: nc.now(), } } else if savedCondition != nil && currentReadyCondition == nil { klog.Errorf("ReadyCondition was removed from Status of Node %s", node.Name) // TODO: figure out what to do in this case. For now we do the same thing as above. nodeHealth = &nodeHealthData{ status: &node.Status, probeTimestamp: nc.now(), readyTransitionTimestamp: nc.now(), } } else if savedCondition != nil && currentReadyCondition != nil && savedCondition.LastHeartbeatTime != currentReadyCondition.LastHeartbeatTime { var transitionTime metav1.Time // If ReadyCondition changed since the last time we checked, we update the transition timestamp to "now", // otherwise we leave it as it is. if savedCondition.LastTransitionTime != currentReadyCondition.LastTransitionTime { klog.V(3).Infof("ReadyCondition for Node %s transitioned from %v to %v", node.Name, savedCondition, currentReadyCondition) transitionTime = nc.now() } else { transitionTime = nodeHealth.readyTransitionTimestamp } if klog.V(5) { klog.Infof("Node %s ReadyCondition updated. Updating timestamp: %+v vs %+v.", node.Name, nodeHealth.status, node.Status) } else { klog.V(3).Infof("Node %s ReadyCondition updated. Updating timestamp.", node.Name) } nodeHealth = &nodeHealthData{ status: &node.Status, probeTimestamp: nc.now(), readyTransitionTimestamp: transitionTime, } } // Always update the probe time if node lease is renewed. // Note: If kubelet never posted the node status, but continues renewing the // heartbeat leases, the node controller will assume the node is healthy and // take no action. observedLease, _ := nc.leaseLister.Leases(v1.NamespaceNodeLease).Get(node.Name) if observedLease != nil && (savedLease == nil || savedLease.Spec.RenewTime.Before(observedLease.Spec.RenewTime)) { nodeHealth.lease = observedLease nodeHealth.probeTimestamp = nc.now() } if nc.now().After(nodeHealth.probeTimestamp.Add(gracePeriod)) { // NodeReady condition or lease was last set longer ago than gracePeriod, so // update it to Unknown (regardless of its current value) in the master. nodeConditionTypes := []v1.NodeConditionType{ v1.NodeReady, v1.NodeMemoryPressure, v1.NodeDiskPressure, v1.NodePIDPressure, // We don't change 'NodeNetworkUnavailable' condition, as it's managed on a control plane level. // v1.NodeNetworkUnavailable, } nowTimestamp := nc.now() for _, nodeConditionType := range nodeConditionTypes { _, currentCondition := nodeutil.GetNodeCondition(&node.Status, nodeConditionType) if currentCondition == nil { klog.V(2).Infof("Condition %v of node %v was never updated by kubelet", nodeConditionType, node.Name) node.Status.Conditions = append(node.Status.Conditions, v1.NodeCondition{ Type: nodeConditionType, Status: v1.ConditionUnknown, Reason: "NodeStatusNeverUpdated", Message: "Kubelet never posted node status.", LastHeartbeatTime: node.CreationTimestamp, LastTransitionTime: nowTimestamp, }) } else { klog.V(2).Infof("node %v hasn't been updated for %+v. Last %v is: %+v", node.Name, nc.now().Time.Sub(nodeHealth.probeTimestamp.Time), nodeConditionType, currentCondition) if currentCondition.Status != v1.ConditionUnknown { currentCondition.Status = v1.ConditionUnknown currentCondition.Reason = "NodeStatusUnknown" currentCondition.Message = "Kubelet stopped posting node status." currentCondition.LastTransitionTime = nowTimestamp } } } // We need to update currentReadyCondition due to its value potentially changed. _, currentReadyCondition = nodeutil.GetNodeCondition(&node.Status, v1.NodeReady) if !apiequality.Semantic.DeepEqual(currentReadyCondition, &observedReadyCondition) { if _, err := nc.kubeClient.CoreV1().Nodes().UpdateStatus(context.TODO(), node, metav1.UpdateOptions{}); err != nil { klog.Errorf("Error updating node %s: %v", node.Name, err) return gracePeriod, observedReadyCondition, currentReadyCondition, err } nodeHealth = &nodeHealthData{ status: &node.Status, probeTimestamp: nodeHealth.probeTimestamp, readyTransitionTimestamp: nc.now(), lease: observedLease, } return gracePeriod, observedReadyCondition, currentReadyCondition, nil } } return gracePeriod, observedReadyCondition, currentReadyCondition, nil } func (nc *Controller) handleDisruption(zoneToNodeConditions map[string][]*v1.NodeCondition, nodes []*v1.Node) { newZoneStates := map[string]ZoneState{} allAreFullyDisrupted := true for k, v := range zoneToNodeConditions { zoneSize.WithLabelValues(k).Set(float64(len(v))) unhealthy, newState := nc.computeZoneStateFunc(v) zoneHealth.WithLabelValues(k).Set(float64(100*(len(v)-unhealthy)) / float64(len(v))) unhealthyNodes.WithLabelValues(k).Set(float64(unhealthy)) if newState != stateFullDisruption { allAreFullyDisrupted = false } newZoneStates[k] = newState if _, had := nc.zoneStates[k]; !had { klog.Errorf("Setting initial state for unseen zone: %v", k) nc.zoneStates[k] = stateInitial } } allWasFullyDisrupted := true for k, v := range nc.zoneStates { if _, have := zoneToNodeConditions[k]; !have { zoneSize.WithLabelValues(k).Set(0) zoneHealth.WithLabelValues(k).Set(100) unhealthyNodes.WithLabelValues(k).Set(0) delete(nc.zoneStates, k) continue } if v != stateFullDisruption { allWasFullyDisrupted = false break } } // At least one node was responding in previous pass or in the current pass. Semantics is as follows: // - if the new state is "partialDisruption" we call a user defined function that returns a new limiter to use, // - if the new state is "normal" we resume normal operation (go back to default limiter settings), // - if new state is "fullDisruption" we restore normal eviction rate, // - unless all zones in the cluster are in "fullDisruption" - in that case we stop all evictions. if !allAreFullyDisrupted || !allWasFullyDisrupted { // We're switching to full disruption mode if allAreFullyDisrupted { klog.V(0).Info("Controller detected that all Nodes are not-Ready. Entering master disruption mode.") for i := range nodes { if nc.useTaintBasedEvictions { _, err := nc.markNodeAsReachable(nodes[i]) if err != nil { klog.Errorf("Failed to remove taints from Node %v", nodes[i].Name) } } else { nc.cancelPodEviction(nodes[i]) } } // We stop all evictions. for k := range nc.zoneStates { if nc.useTaintBasedEvictions { nc.zoneNoExecuteTainter[k].SwapLimiter(0) } else { nc.zonePodEvictor[k].SwapLimiter(0) } } for k := range nc.zoneStates { nc.zoneStates[k] = stateFullDisruption } // All rate limiters are updated, so we can return early here. return } // We're exiting full disruption mode if allWasFullyDisrupted { klog.V(0).Info("Controller detected that some Nodes are Ready. Exiting master disruption mode.") // When exiting disruption mode update probe timestamps on all Nodes. now := nc.now() for i := range nodes { v := nc.nodeHealthMap.getDeepCopy(nodes[i].Name) v.probeTimestamp = now v.readyTransitionTimestamp = now nc.nodeHealthMap.set(nodes[i].Name, v) } // We reset all rate limiters to settings appropriate for the given state. for k := range nc.zoneStates { nc.setLimiterInZone(k, len(zoneToNodeConditions[k]), newZoneStates[k]) nc.zoneStates[k] = newZoneStates[k] } return } // We know that there's at least one not-fully disrupted so, // we can use default behavior for rate limiters for k, v := range nc.zoneStates { newState := newZoneStates[k] if v == newState { continue } klog.V(0).Infof("Controller detected that zone %v is now in state %v.", k, newState) nc.setLimiterInZone(k, len(zoneToNodeConditions[k]), newState) nc.zoneStates[k] = newState } } } func (nc *Controller) podUpdated(oldPod, newPod *v1.Pod) { if newPod == nil { return } if len(newPod.Spec.NodeName) != 0 && (oldPod == nil || newPod.Spec.NodeName != oldPod.Spec.NodeName) { podItem := podUpdateItem{newPod.Namespace, newPod.Name} nc.podUpdateQueue.Add(podItem) } } func (nc *Controller) doPodProcessingWorker() { for { obj, shutdown := nc.podUpdateQueue.Get() // "podUpdateQueue" will be shutdown when "stopCh" closed; // we do not need to re-check "stopCh" again. if shutdown { return } podItem := obj.(podUpdateItem) nc.processPod(podItem) } } // processPod is processing events of assigning pods to nodes. In particular: // 1. for NodeReady=true node, taint eviction for this pod will be cancelled // 2. for NodeReady=false or unknown node, taint eviction of pod will happen and pod will be marked as not ready // 3. if node doesn't exist in cache, it will be skipped and handled later by doEvictionPass func (nc *Controller) processPod(podItem podUpdateItem) { defer nc.podUpdateQueue.Done(podItem) pod, err := nc.podLister.Pods(podItem.namespace).Get(podItem.name) if err != nil { if apierrors.IsNotFound(err) { // If the pod was deleted, there is no need to requeue. return } klog.Warningf("Failed to read pod %v/%v: %v.", podItem.namespace, podItem.name, err) nc.podUpdateQueue.AddRateLimited(podItem) return } nodeName := pod.Spec.NodeName nodeHealth := nc.nodeHealthMap.getDeepCopy(nodeName) if nodeHealth == nil { // Node data is not gathered yet or node has beed removed in the meantime. // Pod will be handled by doEvictionPass method. return } node, err := nc.nodeLister.Get(nodeName) if err != nil { klog.Warningf("Failed to read node %v: %v.", nodeName, err) nc.podUpdateQueue.AddRateLimited(podItem) return } _, currentReadyCondition := nodeutil.GetNodeCondition(nodeHealth.status, v1.NodeReady) if currentReadyCondition == nil { // Lack of NodeReady condition may only happen after node addition (or if it will be maliciously deleted). // In both cases, the pod will be handled correctly (evicted if needed) during processing // of the next node update event. return } pods := []*v1.Pod{pod} // In taint-based eviction mode, only node updates are processed by NodeLifecycleController. // Pods are processed by TaintManager. if !nc.useTaintBasedEvictions { if err := nc.processNoTaintBaseEviction(node, currentReadyCondition, nc.nodeMonitorGracePeriod, pods); err != nil { klog.Warningf("Unable to process pod %+v eviction from node %v: %v.", podItem, nodeName, err) nc.podUpdateQueue.AddRateLimited(podItem) return } } if currentReadyCondition.Status != v1.ConditionTrue { if err := nodeutil.MarkPodsNotReady(nc.kubeClient, pods, nodeName); err != nil { klog.Warningf("Unable to mark pod %+v NotReady on node %v: %v.", podItem, nodeName, err) nc.podUpdateQueue.AddRateLimited(podItem) } } } func (nc *Controller) setLimiterInZone(zone string, zoneSize int, state ZoneState) { switch state { case stateNormal: if nc.useTaintBasedEvictions { nc.zoneNoExecuteTainter[zone].SwapLimiter(nc.evictionLimiterQPS) } else { nc.zonePodEvictor[zone].SwapLimiter(nc.evictionLimiterQPS) } case statePartialDisruption: if nc.useTaintBasedEvictions { nc.zoneNoExecuteTainter[zone].SwapLimiter( nc.enterPartialDisruptionFunc(zoneSize)) } else { nc.zonePodEvictor[zone].SwapLimiter( nc.enterPartialDisruptionFunc(zoneSize)) } case stateFullDisruption: if nc.useTaintBasedEvictions { nc.zoneNoExecuteTainter[zone].SwapLimiter( nc.enterFullDisruptionFunc(zoneSize)) } else { nc.zonePodEvictor[zone].SwapLimiter( nc.enterFullDisruptionFunc(zoneSize)) } } } // classifyNodes classifies the allNodes to three categories: // 1. added: the nodes that in 'allNodes', but not in 'knownNodeSet' // 2. deleted: the nodes that in 'knownNodeSet', but not in 'allNodes' // 3. newZoneRepresentatives: the nodes that in both 'knownNodeSet' and 'allNodes', but no zone states func (nc *Controller) classifyNodes(allNodes []*v1.Node) (added, deleted, newZoneRepresentatives []*v1.Node) { for i := range allNodes { if _, has := nc.knownNodeSet[allNodes[i].Name]; !has { added = append(added, allNodes[i]) } else { // Currently, we only consider new zone as updated. zone := utilnode.GetZoneKey(allNodes[i]) if _, found := nc.zoneStates[zone]; !found { newZoneRepresentatives = append(newZoneRepresentatives, allNodes[i]) } } } // If there's a difference between lengths of known Nodes and observed nodes // we must have removed some Node. if len(nc.knownNodeSet)+len(added) != len(allNodes) { knowSetCopy := map[string]*v1.Node{} for k, v := range nc.knownNodeSet { knowSetCopy[k] = v } for i := range allNodes { delete(knowSetCopy, allNodes[i].Name) } for i := range knowSetCopy { deleted = append(deleted, knowSetCopy[i]) } } return } // HealthyQPSFunc returns the default value for cluster eviction rate - we take // nodeNum for consistency with ReducedQPSFunc. func (nc *Controller) HealthyQPSFunc(nodeNum int) float32 { return nc.evictionLimiterQPS } // ReducedQPSFunc returns the QPS for when a the cluster is large make // evictions slower, if they're small stop evictions altogether. func (nc *Controller) ReducedQPSFunc(nodeNum int) float32 { if int32(nodeNum) > nc.largeClusterThreshold { return nc.secondaryEvictionLimiterQPS } return 0 } // addPodEvictorForNewZone checks if new zone appeared, and if so add new evictor. func (nc *Controller) addPodEvictorForNewZone(node *v1.Node) { nc.evictorLock.Lock() defer nc.evictorLock.Unlock() zone := utilnode.GetZoneKey(node) if _, found := nc.zoneStates[zone]; !found { nc.zoneStates[zone] = stateInitial if !nc.useTaintBasedEvictions { nc.zonePodEvictor[zone] = scheduler.NewRateLimitedTimedQueue( flowcontrol.NewTokenBucketRateLimiter(nc.evictionLimiterQPS, scheduler.EvictionRateLimiterBurst)) } else { nc.zoneNoExecuteTainter[zone] = scheduler.NewRateLimitedTimedQueue( flowcontrol.NewTokenBucketRateLimiter(nc.evictionLimiterQPS, scheduler.EvictionRateLimiterBurst)) } // Init the metric for the new zone. klog.Infof("Initializing eviction metric for zone: %v", zone) evictionsNumber.WithLabelValues(zone).Add(0) } } // cancelPodEviction removes any queued evictions, typically because the node is available again. It // returns true if an eviction was queued. func (nc *Controller) cancelPodEviction(node *v1.Node) bool { zone := utilnode.GetZoneKey(node) nc.evictorLock.Lock() defer nc.evictorLock.Unlock() if !nc.nodeEvictionMap.setStatus(node.Name, unmarked) { klog.V(2).Infof("node %v was unregistered in the meantime - skipping setting status", node.Name) } wasDeleting := nc.zonePodEvictor[zone].Remove(node.Name) if wasDeleting { klog.V(2).Infof("Cancelling pod Eviction on Node: %v", node.Name) return true } return false } // evictPods: // - adds node to evictor queue if the node is not marked as evicted. // Returns false if the node name was already enqueued. // - deletes pods immediately if node is already marked as evicted. // Returns false, because the node wasn't added to the queue. func (nc *Controller) evictPods(node *v1.Node, pods []*v1.Pod) (bool, error) { nc.evictorLock.Lock() defer nc.evictorLock.Unlock() status, ok := nc.nodeEvictionMap.getStatus(node.Name) if ok && status == evicted { // Node eviction already happened for this node. // Handling immediate pod deletion. _, err := nodeutil.DeletePods(nc.kubeClient, pods, nc.recorder, node.Name, string(node.UID), nc.daemonSetStore) if err != nil { return false, fmt.Errorf("unable to delete pods from node %q: %v", node.Name, err) } return false, nil } if !nc.nodeEvictionMap.setStatus(node.Name, toBeEvicted) { klog.V(2).Infof("node %v was unregistered in the meantime - skipping setting status", node.Name) } return nc.zonePodEvictor[utilnode.GetZoneKey(node)].Add(node.Name, string(node.UID)), nil } func (nc *Controller) markNodeForTainting(node *v1.Node) bool { nc.evictorLock.Lock() defer nc.evictorLock.Unlock() return nc.zoneNoExecuteTainter[utilnode.GetZoneKey(node)].Add(node.Name, string(node.UID)) } func (nc *Controller) markNodeAsReachable(node *v1.Node) (bool, error) { nc.evictorLock.Lock() defer nc.evictorLock.Unlock() err := controller.RemoveTaintOffNode(nc.kubeClient, node.Name, node, UnreachableTaintTemplate) if err != nil { klog.Errorf("Failed to remove taint from node %v: %v", node.Name, err) return false, err } err = controller.RemoveTaintOffNode(nc.kubeClient, node.Name, node, NotReadyTaintTemplate) if err != nil { klog.Errorf("Failed to remove taint from node %v: %v", node.Name, err) return false, err } return nc.zoneNoExecuteTainter[utilnode.GetZoneKey(node)].Remove(node.Name), nil } // ComputeZoneState returns a slice of NodeReadyConditions for all Nodes in a given zone. // The zone is considered: // - fullyDisrupted if there're no Ready Nodes, // - partiallyDisrupted if at least than nc.unhealthyZoneThreshold percent of Nodes are not Ready, // - normal otherwise func (nc *Controller) ComputeZoneState(nodeReadyConditions []*v1.NodeCondition) (int, ZoneState) { readyNodes := 0 notReadyNodes := 0 for i := range nodeReadyConditions { if nodeReadyConditions[i] != nil && nodeReadyConditions[i].Status == v1.ConditionTrue { readyNodes++ } else { notReadyNodes++ } } switch { case readyNodes == 0 && notReadyNodes > 0: return notReadyNodes, stateFullDisruption case notReadyNodes > 2 && float32(notReadyNodes)/float32(notReadyNodes+readyNodes) >= nc.unhealthyZoneThreshold: return notReadyNodes, statePartialDisruption default: return notReadyNodes, stateNormal } } // reconcileNodeLabels reconciles node labels. func (nc *Controller) reconcileNodeLabels(nodeName string) error { node, err := nc.nodeLister.Get(nodeName) if err != nil { // If node not found, just ignore it. if apierrors.IsNotFound(err) { return nil } return err } if node.Labels == nil { // Nothing to reconcile. return nil } labelsToUpdate := map[string]string{} for _, r := range labelReconcileInfo { primaryValue, primaryExists := node.Labels[r.primaryKey] secondaryValue, secondaryExists := node.Labels[r.secondaryKey] if !primaryExists { // The primary label key does not exist. This should not happen // within our supported version skew range, when no external // components/factors modifying the node object. Ignore this case. continue } if secondaryExists && primaryValue != secondaryValue { // Secondary label exists, but not consistent with the primary // label. Need to reconcile. labelsToUpdate[r.secondaryKey] = primaryValue } else if !secondaryExists && r.ensureSecondaryExists { // Apply secondary label based on primary label. labelsToUpdate[r.secondaryKey] = primaryValue } } if len(labelsToUpdate) == 0 { return nil } if !nodeutil.AddOrUpdateLabelsOnNode(nc.kubeClient, labelsToUpdate, node) { return fmt.Errorf("failed update labels for node %+v", node) } return nil }