stencil-blocks.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. #include "stencil.h"
  17. #include <math.h>
  18. /* Manage block and tags allocation */
  19. static struct block_description *blocks;
  20. static unsigned sizex, sizey, sizez;
  21. static unsigned nbz;
  22. static unsigned *block_sizes_z;
  23. /*
  24. * Tags for various codelet completion
  25. */
  26. /*
  27. * common tag format:
  28. */
  29. static starpu_tag_t tag_common(int z, int dir, int type)
  30. {
  31. return (((((starpu_tag_t)type) << 4) | ((dir+1)/2)) << 32)|(starpu_tag_t)z;
  32. }
  33. /* Completion of last update tasks */
  34. starpu_tag_t TAG_FINISH(int z)
  35. {
  36. z = (z + nbz)%nbz;
  37. starpu_tag_t tag = tag_common(z, 0, 1);
  38. return tag;
  39. }
  40. /* Completion of the save codelet for MPI send/recv */
  41. starpu_tag_t TAG_START(int z, int dir)
  42. {
  43. z = (z + nbz)%nbz;
  44. starpu_tag_t tag = tag_common(z, dir, 2);
  45. return tag;
  46. }
  47. /*
  48. * common MPI tag format:
  49. * iter is actually not needed for coherency, but it makes debugging easier
  50. */
  51. static int mpi_tag_common(int z, int iter, int dir, int buffer)
  52. {
  53. return (((((iter << 12)|z)<<4) | ((1+dir)/2))<<4)|buffer;
  54. }
  55. int MPI_TAG0(int z, int iter, int dir)
  56. {
  57. z = (z + nbz)%nbz;
  58. int tag = mpi_tag_common(z, iter, dir, 0);
  59. return tag;
  60. }
  61. int MPI_TAG1(int z, int iter, int dir)
  62. {
  63. z = (z + nbz)%nbz;
  64. int tag = mpi_tag_common(z, iter, dir, 1);
  65. return tag;
  66. }
  67. /*
  68. * Block descriptors
  69. */
  70. /* Compute the size of the different blocks */
  71. static void compute_block_sizes(void)
  72. {
  73. block_sizes_z = (unsigned *) malloc(nbz*sizeof(unsigned));
  74. STARPU_ASSERT(block_sizes_z);
  75. /* Perhaps the last chunk is smaller */
  76. unsigned default_block_size = (sizez+nbz-1)/nbz;
  77. unsigned remaining = sizez;
  78. unsigned b;
  79. for (b = 0; b < nbz; b++)
  80. {
  81. block_sizes_z[b] = MIN(default_block_size, remaining);
  82. remaining -= block_sizes_z[b];
  83. }
  84. STARPU_ASSERT(remaining == 0);
  85. }
  86. unsigned get_block_size(int bz)
  87. {
  88. return block_sizes_z[bz];
  89. }
  90. struct block_description *get_block_description(int z)
  91. {
  92. z = (z + nbz)%nbz;
  93. STARPU_ASSERT(&blocks[z]);
  94. return &blocks[z];
  95. }
  96. int get_block_mpi_node(int z)
  97. {
  98. z = (z + nbz)%nbz;
  99. return blocks[z].mpi_node;
  100. }
  101. void create_blocks_array(unsigned _sizex, unsigned _sizey, unsigned _sizez, unsigned _nbz)
  102. {
  103. /* Store the parameters */
  104. nbz = _nbz;
  105. sizex = _sizex;
  106. sizey = _sizey;
  107. sizez = _sizez;
  108. /* Create a grid of block descriptors */
  109. blocks = (struct block_description *) calloc(nbz, sizeof(struct block_description));
  110. STARPU_ASSERT(blocks);
  111. /* What is the size of the different blocks ? */
  112. compute_block_sizes();
  113. unsigned bz;
  114. for (bz = 0; bz < nbz; bz++)
  115. {
  116. struct block_description * block =
  117. get_block_description(bz);
  118. /* Which block is it ? */
  119. block->bz = bz;
  120. /* For simplicity, we store which are the neighbours blocks */
  121. block->boundary_blocks[B] = get_block_description((bz-1+nbz)%nbz);
  122. block->boundary_blocks[T] = get_block_description((bz+1)%nbz);
  123. }
  124. }
  125. void free_blocks_array()
  126. {
  127. free(blocks);
  128. free(block_sizes_z);
  129. }
  130. /*
  131. * Initialization of the blocks
  132. */
  133. void assign_blocks_to_workers(int rank)
  134. {
  135. unsigned bz;
  136. /* NB: perhaps we could count a GPU as multiple workers */
  137. /* how many workers are there ? */
  138. /*unsigned nworkers = starpu_worker_get_count();*/
  139. /* how many blocks are on that MPI node ? */
  140. // unsigned nblocks = 0;
  141. // for (bz = 0; bz < nbz; bz++)
  142. // {
  143. // struct block_description *block =
  144. // get_block_description(bz);
  145. //
  146. // if (block->mpi_node == rank)
  147. // nblocks++;
  148. // }
  149. /* how many blocks per worker ? */
  150. /*unsigned nblocks_per_worker = (nblocks + nworkers - 1)/nworkers;*/
  151. /* we now attribute up to nblocks_per_worker blocks per workers */
  152. unsigned attributed = 0;
  153. for (bz = 0; bz < nbz; bz++)
  154. {
  155. struct block_description *block =
  156. get_block_description(bz);
  157. if (block->mpi_node == rank)
  158. {
  159. unsigned workerid;
  160. /* Manage initial block distribution between CPU and GPU */
  161. #if 0
  162. #if 1
  163. /* GPUs then CPUs */
  164. if (attributed < 3*18)
  165. workerid = attributed / 18;
  166. else
  167. workerid = 3+ (attributed - 3*18) / 2;
  168. #else
  169. /* GPUs interleaved with CPUs */
  170. if ((attributed % 20) <= 1)
  171. workerid = 3 + attributed / 20;
  172. else if (attributed < 60)
  173. workerid = attributed / 20;
  174. else
  175. workerid = (attributed - 60)/2 + 6;
  176. #endif
  177. #else
  178. /* Only GPUS */
  179. workerid = (attributed / 21) % 3;
  180. #endif
  181. /*= attributed/nblocks_per_worker;*/
  182. block->preferred_worker = workerid;
  183. attributed++;
  184. }
  185. }
  186. }
  187. void assign_blocks_to_mpi_nodes(int world_size)
  188. {
  189. unsigned nzblocks_per_process = (nbz + world_size - 1) / world_size;
  190. unsigned bz;
  191. for (bz = 0; bz < nbz; bz++)
  192. {
  193. struct block_description *block =
  194. get_block_description(bz);
  195. block->mpi_node = bz / nzblocks_per_process;
  196. }
  197. }
  198. static size_t allocated = 0;
  199. static void allocate_block_on_node(starpu_data_handle_t *handleptr, unsigned bz, TYPE **ptr, unsigned nx, unsigned ny, unsigned nz)
  200. {
  201. int ret;
  202. size_t block_size = nx*ny*nz*sizeof(TYPE);
  203. /* Allocate memory */
  204. #if 1
  205. ret = starpu_malloc_flags((void **)ptr, block_size, STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  206. STARPU_ASSERT(ret == 0);
  207. #else
  208. *ptr = malloc(block_size);
  209. STARPU_ASSERT(*ptr);
  210. #endif
  211. allocated += block_size;
  212. #ifndef STARPU_SIMGRID
  213. /* Fill the blocks with 0 */
  214. memset(*ptr, 0, block_size);
  215. #endif
  216. /* Register it to StarPU */
  217. starpu_block_data_register(handleptr, STARPU_MAIN_RAM, (uintptr_t)*ptr, nx, nx*ny, nx, ny, nz, sizeof(TYPE));
  218. starpu_data_set_coordinates(*handleptr, 1, bz);
  219. }
  220. static void free_block_on_node(starpu_data_handle_t handleptr, unsigned nx, unsigned ny, unsigned nz)
  221. {
  222. void *ptr = (void *) starpu_block_get_local_ptr(handleptr);
  223. size_t block_size = nx*ny*nz*sizeof(TYPE);
  224. starpu_data_unregister(handleptr);
  225. starpu_free_flags(ptr, block_size, STARPU_MALLOC_PINNED|STARPU_MALLOC_SIMULATION_FOLDED);
  226. }
  227. void display_memory_consumption(int rank)
  228. {
  229. FPRINTF(stderr, "%lu B of memory were allocated on node %d\n", (unsigned long) allocated, rank);
  230. }
  231. void allocate_memory_on_node(int rank)
  232. {
  233. unsigned bz;
  234. for (bz = 0; bz < nbz; bz++)
  235. {
  236. struct block_description *block = get_block_description(bz);
  237. int node = block->mpi_node;
  238. /* Main blocks */
  239. if (node == rank)
  240. {
  241. unsigned size_bz = block_sizes_z[bz];
  242. allocate_block_on_node(&block->layers_handle[0], bz, &block->layers[0],
  243. (sizex + 2*K), (sizey + 2*K), (size_bz + 2*K));
  244. #ifndef STARPU_SIMGRID
  245. #ifdef LIFE
  246. unsigned x, y, z;
  247. unsigned sum = 0;
  248. for (x = 0; x < sizex; x++)
  249. for (y = 0; y < sizey; y++)
  250. for (z = 0; z < size_bz; z++)
  251. /* Just random data */
  252. sum += block->layers[0][(K+x)+(K+y)*(sizex + 2*K)+(K+z)*(sizex+2*K)*(sizey+2*K)] = (int)((x/7.+y/13.+(bz*size_bz + z)/17.) * 10.) % 2;
  253. /* printf("block %d starts with %d/%d alive\n", bz, sum, sizex*sizey*size_bz);*/
  254. #endif
  255. #endif
  256. allocate_block_on_node(&block->layers_handle[1], bz, &block->layers[1],
  257. (sizex + 2*K), (sizey + 2*K), (size_bz + 2*K));
  258. }
  259. /* Boundary blocks : Top */
  260. int top_node = block->boundary_blocks[T]->mpi_node;
  261. if ((node == rank) || (top_node == rank))
  262. {
  263. allocate_block_on_node(&block->boundaries_handle[T][0], bz, &block->boundaries[T][0],
  264. (sizex + 2*K), (sizey + 2*K), K);
  265. allocate_block_on_node(&block->boundaries_handle[T][1], bz, &block->boundaries[T][1],
  266. (sizex + 2*K), (sizey + 2*K), K);
  267. }
  268. /* Boundary blocks : Bottom */
  269. int bottom_node = block->boundary_blocks[B]->mpi_node;
  270. if ((node == rank) || (bottom_node == rank))
  271. {
  272. allocate_block_on_node(&block->boundaries_handle[B][0], bz, &block->boundaries[B][0],
  273. (sizex + 2*K), (sizey + 2*K), K);
  274. allocate_block_on_node(&block->boundaries_handle[B][1], bz, &block->boundaries[B][1],
  275. (sizex + 2*K), (sizey + 2*K), K);
  276. }
  277. }
  278. }
  279. void free_memory_on_node(int rank)
  280. {
  281. unsigned bz;
  282. for (bz = 0; bz < nbz; bz++)
  283. {
  284. struct block_description *block = get_block_description(bz);
  285. int node = block->mpi_node;
  286. /* Main blocks */
  287. if (node == rank)
  288. {
  289. free_block_on_node(block->layers_handle[0], (sizex + 2*K), (sizey + 2*K), K);
  290. free_block_on_node(block->layers_handle[1], (sizex + 2*K), (sizey + 2*K), K);
  291. }
  292. /* Boundary blocks : Top */
  293. int top_node = block->boundary_blocks[T]->mpi_node;
  294. if ((node == rank) || (top_node == rank))
  295. {
  296. free_block_on_node(block->boundaries_handle[T][0], (sizex + 2*K), (sizey + 2*K), K);
  297. free_block_on_node(block->boundaries_handle[T][1], (sizex + 2*K), (sizey + 2*K), K);
  298. }
  299. /* Boundary blocks : Bottom */
  300. int bottom_node = block->boundary_blocks[B]->mpi_node;
  301. if ((node == rank) || (bottom_node == rank))
  302. {
  303. free_block_on_node(block->boundaries_handle[B][0], (sizex + 2*K), (sizey + 2*K), K);
  304. free_block_on_node(block->boundaries_handle[B][1], (sizex + 2*K), (sizey + 2*K), K);
  305. }
  306. }
  307. }
  308. /* check how many cells are alive */
  309. void check(int rank)
  310. {
  311. unsigned bz;
  312. for (bz = 0; bz < nbz; bz++)
  313. {
  314. struct block_description *block = get_block_description(bz);
  315. int node = block->mpi_node;
  316. /* Main blocks */
  317. if (node == rank)
  318. {
  319. #ifdef LIFE
  320. unsigned size_bz = block_sizes_z[bz];
  321. unsigned x, y, z;
  322. unsigned sum = 0;
  323. for (x = 0; x < sizex; x++)
  324. for (y = 0; y < sizey; y++)
  325. for (z = 0; z < size_bz; z++)
  326. sum += block->layers[0][(K+x)+(K+y)*(sizex + 2*K)+(K+z)*(sizex+2*K)*(sizey+2*K)];
  327. printf("block %u got %u/%u alive\n", bz, sum, sizex*sizey*size_bz);
  328. #endif
  329. }
  330. }
  331. }