| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363 | /* dsymm.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Subroutine */ int _starpu_dsymm_(char *side, char *uplo, integer *m, integer *n, 	doublereal *alpha, doublereal *a, integer *lda, doublereal *b, 	integer *ldb, doublereal *beta, doublereal *c__, integer *ldc){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, 	    i__3;    /* Local variables */    integer i__, j, k, info;    doublereal temp1, temp2;    extern logical _starpu_lsame_(char *, char *);    integer nrowa;    logical upper;    extern /* Subroutine */ int _starpu_xerbla_(char *, integer *);/*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSYMM  performs one of the matrix-matrix operations *//*     C := alpha*A*B + beta*C, *//*  or *//*     C := alpha*B*A + beta*C, *//*  where alpha and beta are scalars,  A is a symmetric matrix and  B and *//*  C are  m by n matrices. *//*  Arguments *//*  ========== *//*  SIDE   - CHARACTER*1. *//*           On entry,  SIDE  specifies whether  the  symmetric matrix  A *//*           appears on the  left or right  in the  operation as follows: *//*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C, *//*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C, *//*           Unchanged on exit. *//*  UPLO   - CHARACTER*1. *//*           On  entry,   UPLO  specifies  whether  the  upper  or  lower *//*           triangular  part  of  the  symmetric  matrix   A  is  to  be *//*           referenced as follows: *//*              UPLO = 'U' or 'u'   Only the upper triangular part of the *//*                                  symmetric matrix is to be referenced. *//*              UPLO = 'L' or 'l'   Only the lower triangular part of the *//*                                  symmetric matrix is to be referenced. *//*           Unchanged on exit. *//*  M      - INTEGER. *//*           On entry,  M  specifies the number of rows of the matrix  C. *//*           M  must be at least zero. *//*           Unchanged on exit. *//*  N      - INTEGER. *//*           On entry, N specifies the number of columns of the matrix C. *//*           N  must be at least zero. *//*           Unchanged on exit. *//*  ALPHA  - DOUBLE PRECISION. *//*           On entry, ALPHA specifies the scalar alpha. *//*           Unchanged on exit. *//*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is *//*           m  when  SIDE = 'L' or 'l'  and is  n otherwise. *//*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of *//*           the array  A  must contain the  symmetric matrix,  such that *//*           when  UPLO = 'U' or 'u', the leading m by m upper triangular *//*           part of the array  A  must contain the upper triangular part *//*           of the  symmetric matrix and the  strictly  lower triangular *//*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l', *//*           the leading  m by m  lower triangular part  of the  array  A *//*           must  contain  the  lower triangular part  of the  symmetric *//*           matrix and the  strictly upper triangular part of  A  is not *//*           referenced. *//*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of *//*           the array  A  must contain the  symmetric matrix,  such that *//*           when  UPLO = 'U' or 'u', the leading n by n upper triangular *//*           part of the array  A  must contain the upper triangular part *//*           of the  symmetric matrix and the  strictly  lower triangular *//*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l', *//*           the leading  n by n  lower triangular part  of the  array  A *//*           must  contain  the  lower triangular part  of the  symmetric *//*           matrix and the  strictly upper triangular part of  A  is not *//*           referenced. *//*           Unchanged on exit. *//*  LDA    - INTEGER. *//*           On entry, LDA specifies the first dimension of A as declared *//*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then *//*           LDA must be at least  max( 1, m ), otherwise  LDA must be at *//*           least  max( 1, n ). *//*           Unchanged on exit. *//*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). *//*           Before entry, the leading  m by n part of the array  B  must *//*           contain the matrix B. *//*           Unchanged on exit. *//*  LDB    - INTEGER. *//*           On entry, LDB specifies the first dimension of B as declared *//*           in  the  calling  (sub)  program.   LDB  must  be  at  least *//*           max( 1, m ). *//*           Unchanged on exit. *//*  BETA   - DOUBLE PRECISION. *//*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is *//*           supplied as zero then C need not be set on input. *//*           Unchanged on exit. *//*  C      - DOUBLE PRECISION array of DIMENSION ( LDC, n ). *//*           Before entry, the leading  m by n  part of the array  C must *//*           contain the matrix  C,  except when  beta  is zero, in which *//*           case C need not be set on entry. *//*           On exit, the array  C  is overwritten by the  m by n updated *//*           matrix. *//*  LDC    - INTEGER. *//*           On entry, LDC specifies the first dimension of C as declared *//*           in  the  calling  (sub)  program.   LDC  must  be  at  least *//*           max( 1, m ). *//*           Unchanged on exit. *//*  Level 3 Blas routine. *//*  -- Written on 8-February-1989. *//*     Jack Dongarra, Argonne National Laboratory. *//*     Iain Duff, AERE Harwell. *//*     Jeremy Du Croz, Numerical Algorithms Group Ltd. *//*     Sven Hammarling, Numerical Algorithms Group Ltd. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. Parameters .. *//*     .. *//*     Set NROWA as the number of rows of A. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    c_dim1 = *ldc;    c_offset = 1 + c_dim1;    c__ -= c_offset;    /* Function Body */    if (_starpu_lsame_(side, "L")) {	nrowa = *m;    } else {	nrowa = *n;    }    upper = _starpu_lsame_(uplo, "U");/*     Test the input parameters. */    info = 0;    if (! _starpu_lsame_(side, "L") && ! _starpu_lsame_(side, "R")) {	info = 1;    } else if (! upper && ! _starpu_lsame_(uplo, "L")) {	info = 2;    } else if (*m < 0) {	info = 3;    } else if (*n < 0) {	info = 4;    } else if (*lda < max(1,nrowa)) {	info = 7;    } else if (*ldb < max(1,*m)) {	info = 9;    } else if (*ldc < max(1,*m)) {	info = 12;    }    if (info != 0) {	_starpu_xerbla_("DSYMM ", &info);	return 0;    }/*     Quick return if possible. */    if (*m == 0 || *n == 0 || *alpha == 0. && *beta == 1.) {	return 0;    }/*     And when  alpha.eq.zero. */    if (*alpha == 0.) {	if (*beta == 0.) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    c__[i__ + j * c_dim1] = 0.;/* L10: */		}/* L20: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];/* L30: */		}/* L40: */	    }	}	return 0;    }/*     Start the operations. */    if (_starpu_lsame_(side, "L")) {/*        Form  C := alpha*A*B + beta*C. */	if (upper) {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    temp1 = *alpha * b[i__ + j * b_dim1];		    temp2 = 0.;		    i__3 = i__ - 1;		    for (k = 1; k <= i__3; ++k) {			c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];			temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];/* L50: */		    }		    if (*beta == 0.) {			c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] 				+ *alpha * temp2;		    } else {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] 				+ temp1 * a[i__ + i__ * a_dim1] + *alpha * 				temp2;		    }/* L60: */		}/* L70: */	    }	} else {	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		for (i__ = *m; i__ >= 1; --i__) {		    temp1 = *alpha * b[i__ + j * b_dim1];		    temp2 = 0.;		    i__2 = *m;		    for (k = i__ + 1; k <= i__2; ++k) {			c__[k + j * c_dim1] += temp1 * a[k + i__ * a_dim1];			temp2 += b[k + j * b_dim1] * a[k + i__ * a_dim1];/* L80: */		    }		    if (*beta == 0.) {			c__[i__ + j * c_dim1] = temp1 * a[i__ + i__ * a_dim1] 				+ *alpha * temp2;		    } else {			c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] 				+ temp1 * a[i__ + i__ * a_dim1] + *alpha * 				temp2;		    }/* L90: */		}/* L100: */	    }	}    } else {/*        Form  C := alpha*B*A + beta*C. */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    temp1 = *alpha * a[j + j * a_dim1];	    if (*beta == 0.) {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    c__[i__ + j * c_dim1] = temp1 * b[i__ + j * b_dim1];/* L110: */		}	    } else {		i__2 = *m;		for (i__ = 1; i__ <= i__2; ++i__) {		    c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1] + 			    temp1 * b[i__ + j * b_dim1];/* L120: */		}	    }	    i__2 = j - 1;	    for (k = 1; k <= i__2; ++k) {		if (upper) {		    temp1 = *alpha * a[k + j * a_dim1];		} else {		    temp1 = *alpha * a[j + k * a_dim1];		}		i__3 = *m;		for (i__ = 1; i__ <= i__3; ++i__) {		    c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];/* L130: */		}/* L140: */	    }	    i__2 = *n;	    for (k = j + 1; k <= i__2; ++k) {		if (upper) {		    temp1 = *alpha * a[j + k * a_dim1];		} else {		    temp1 = *alpha * a[k + j * a_dim1];		}		i__3 = *m;		for (i__ = 1; i__ <= i__3; ++i__) {		    c__[i__ + j * c_dim1] += temp1 * b[i__ + k * b_dim1];/* L150: */		}/* L160: */	    }/* L170: */	}    }    return 0;/*     End of DSYMM . */} /* _starpu_dsymm_ */
 |