sendrecv_parallel_tasks_bench.c 5.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * sendrecv benchmark from different tasks, executed simultaneously on serveral
  18. * workers.
  19. * Inspired a lot from NewMadeleine examples/piom/nm_piom_pingpong.c
  20. *
  21. * The goal is to measure impact of calls to starpu_mpi_* from different threads.
  22. *
  23. * Use STARPU_NCPU to set the number of parallel ping pongs
  24. */
  25. #include <starpu_mpi.h>
  26. #include "helper.h"
  27. #include "bench_helper.h"
  28. #include "abstract_sendrecv_bench.h"
  29. #define NB_WARMUP_PINGPONGS 10
  30. /* We reduce NX_MAX, since some NICs don't support exchanging simultaneously such amount of memory */
  31. #undef NX_MAX
  32. #ifdef STARPU_QUICK_CHECK
  33. #define NX_MAX (1024)
  34. #else
  35. #define NX_MAX (64 * 1024 * 1024)
  36. #endif
  37. void cpu_task(void* descr[], void* args)
  38. {
  39. int mpi_rank;
  40. uint64_t iterations = LOOPS_DEFAULT / 100;
  41. uint64_t s;
  42. starpu_data_handle_t handle_send, handle_recv;
  43. double t1, t2;
  44. int asked_worker;
  45. int current_worker = starpu_worker_get_id();
  46. starpu_codelet_unpack_args(args, &mpi_rank, &asked_worker, &s, &handle_send, &handle_recv);
  47. STARPU_ASSERT(asked_worker == current_worker);
  48. iterations = bench_nb_iterations(iterations, s);
  49. double* lats = malloc(sizeof(double) * iterations);
  50. for (uint64_t j = 0; j < NB_WARMUP_PINGPONGS; j++)
  51. {
  52. if (mpi_rank == 0)
  53. {
  54. starpu_mpi_send(handle_send, 1, 0, MPI_COMM_WORLD);
  55. starpu_mpi_recv(handle_recv, 1, 1, MPI_COMM_WORLD, NULL);
  56. }
  57. else
  58. {
  59. starpu_mpi_recv(handle_recv, 0, 0, MPI_COMM_WORLD, NULL);
  60. starpu_mpi_send(handle_send, 0, 1, MPI_COMM_WORLD);
  61. }
  62. }
  63. for (uint64_t j = 0; j < iterations; j++)
  64. {
  65. if (mpi_rank == 0)
  66. {
  67. t1 = starpu_timing_now();
  68. starpu_mpi_send(handle_send, 1, 0, MPI_COMM_WORLD);
  69. starpu_mpi_recv(handle_recv, 1, 1, MPI_COMM_WORLD, NULL);
  70. t2 = starpu_timing_now();
  71. lats[j] = (t2 - t1) / 2;
  72. }
  73. else
  74. {
  75. starpu_mpi_recv(handle_recv, 0, 0, MPI_COMM_WORLD, NULL);
  76. starpu_mpi_send(handle_send, 0, 1, MPI_COMM_WORLD);
  77. }
  78. }
  79. if (mpi_rank == 0)
  80. {
  81. qsort(lats, iterations, sizeof(double), &comp_double);
  82. const double min_lat = lats[0];
  83. const double max_lat = lats[iterations - 1];
  84. const double med_lat = lats[(iterations - 1) / 2];
  85. const double d1_lat = lats[(iterations - 1) / 10];
  86. const double d9_lat = lats[9 * (iterations - 1) / 10];
  87. double avg_lat = 0.0;
  88. for(uint64_t k = 0; k < iterations; k++)
  89. {
  90. avg_lat += lats[k];
  91. }
  92. avg_lat /= iterations;
  93. const double bw_million_byte = s / min_lat;
  94. const double bw_mbyte = bw_million_byte / 1.048576;
  95. printf("%2d\t\t%9lld\t%9.3lf\t%9.3f\t%9.3f\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf\t%9.3lf\n",
  96. current_worker, (long long) s, min_lat, bw_million_byte, bw_mbyte, d1_lat, med_lat, avg_lat, d9_lat, max_lat);
  97. fflush(stdout);
  98. }
  99. free(lats);
  100. }
  101. static struct starpu_codelet cl =
  102. {
  103. .cpu_funcs = { cpu_task },
  104. .cpu_funcs_name = { "cpu_task" },
  105. .nbuffers = 0
  106. };
  107. int main(int argc, char **argv)
  108. {
  109. int ret, rank, worldsize;
  110. int mpi_init;
  111. MPI_INIT_THREAD(&argc, &argv, MPI_THREAD_SERIALIZED, &mpi_init);
  112. ret = starpu_mpi_init_conf(&argc, &argv, mpi_init, MPI_COMM_WORLD, NULL);
  113. STARPU_CHECK_RETURN_VALUE(ret, "starpu_mpi_init_conf");
  114. starpu_mpi_comm_rank(MPI_COMM_WORLD, &rank);
  115. starpu_mpi_comm_size(MPI_COMM_WORLD, &worldsize);
  116. if (worldsize < 2)
  117. {
  118. if (rank == 0)
  119. FPRINTF(stderr, "We need 2 processes.\n");
  120. starpu_mpi_shutdown();
  121. if (!mpi_init)
  122. MPI_Finalize();
  123. return STARPU_TEST_SKIPPED;
  124. }
  125. if (rank == 0)
  126. {
  127. printf("Times in us\n");
  128. printf("# worker | size (Bytes)\t| latency \t| 10^6 B/s \t| MB/s \t| d1 \t|median \t| avg \t| d9 \t| max\n");
  129. }
  130. else if (rank >= 2)
  131. {
  132. starpu_mpi_shutdown();
  133. if (!mpi_init)
  134. MPI_Finalize();
  135. return 0;
  136. }
  137. unsigned cpu_count = starpu_cpu_worker_get_count();
  138. unsigned* mpi_tags = malloc(cpu_count * sizeof(unsigned));
  139. unsigned tag = 0;
  140. int* workers = malloc(cpu_count * sizeof(int));
  141. float** vectors_send = malloc(cpu_count * sizeof(float*));
  142. float** vectors_recv = malloc(cpu_count * sizeof(float*));
  143. starpu_data_handle_t* handles_send = malloc(cpu_count * sizeof(starpu_data_handle_t));
  144. starpu_data_handle_t* handles_recv = malloc(cpu_count * sizeof(starpu_data_handle_t));
  145. for (uint64_t s = NX_MIN; s <= NX_MAX; s = bench_next_size(s))
  146. {
  147. starpu_pause();
  148. for (int i = 0; i < cpu_count; i++)
  149. {
  150. workers[i] = i;
  151. vectors_send[i] = malloc(s);
  152. vectors_recv[i] = malloc(s);
  153. memset(vectors_send[i], 0, s);
  154. memset(vectors_recv[i], 0, s);
  155. starpu_vector_data_register(&handles_send[i], STARPU_MAIN_RAM, (uintptr_t) vectors_send[i], s, 1);
  156. starpu_vector_data_register(&handles_recv[i], STARPU_MAIN_RAM, (uintptr_t) vectors_recv[i], s, 1);
  157. starpu_task_insert(&cl,
  158. STARPU_EXECUTE_ON_WORKER, workers[i],
  159. STARPU_VALUE, &rank, sizeof(int),
  160. STARPU_VALUE, workers + i, sizeof(int),
  161. STARPU_VALUE, &s, sizeof(uint64_t),
  162. STARPU_VALUE, &handles_send[i], sizeof(starpu_data_handle_t),
  163. STARPU_VALUE, &handles_recv[i], sizeof(starpu_data_handle_t), 0);
  164. }
  165. starpu_resume();
  166. starpu_task_wait_for_all();
  167. for (unsigned i = 0; i < cpu_count; i++)
  168. {
  169. starpu_data_unregister(handles_send[i]);
  170. starpu_data_unregister(handles_recv[i]);
  171. free(vectors_send[i]);
  172. free(vectors_recv[i]);
  173. }
  174. }
  175. free(workers);
  176. free(vectors_send);
  177. free(vectors_recv);
  178. free(handles_send);
  179. free(handles_recv);
  180. free(mpi_tags);
  181. starpu_mpi_shutdown();
  182. if (!mpi_init)
  183. MPI_Finalize();
  184. return 0;
  185. }