| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 | 
							- /* dtptri.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dtptri_(char *uplo, char *diag, integer *n, doublereal *
 
- 	ap, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     /* Local variables */
 
-     integer j, jc, jj;
 
-     doublereal ajj;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, 
 
- 	    doublereal *, doublereal *, integer *);
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     integer jclast;
 
-     logical nounit;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTPTRI computes the inverse of a real upper or lower triangular */
 
- /*  matrix A stored in packed format. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  A is upper triangular; */
 
- /*          = 'L':  A is lower triangular. */
 
- /*  DIAG    (input) CHARACTER*1 */
 
- /*          = 'N':  A is non-unit triangular; */
 
- /*          = 'U':  A is unit triangular. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangular matrix A, stored */
 
- /*          columnwise in a linear array.  The j-th column of A is stored */
 
- /*          in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          See below for further details. */
 
- /*          On exit, the (triangular) inverse of the original matrix, in */
 
- /*          the same packed storage format. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular */
 
- /*                matrix is singular and its inverse can not be computed. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  A triangular matrix A can be transferred to packed storage using one */
 
- /*  of the following program segments: */
 
- /*  UPLO = 'U':                      UPLO = 'L': */
 
- /*        JC = 1                           JC = 1 */
 
- /*        DO 2 J = 1, N                    DO 2 J = 1, N */
 
- /*           DO 1 I = 1, J                    DO 1 I = J, N */
 
- /*              AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J) */
 
- /*      1    CONTINUE                    1    CONTINUE */
 
- /*           JC = JC + J                      JC = JC + N - J + 1 */
 
- /*      2 CONTINUE                       2 CONTINUE */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     nounit = lsame_(diag, "N");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (! nounit && ! lsame_(diag, "U")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTPTRI", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Check for singularity if non-unit. */
 
-     if (nounit) {
 
- 	if (upper) {
 
- 	    jj = 0;
 
- 	    i__1 = *n;
 
- 	    for (*info = 1; *info <= i__1; ++(*info)) {
 
- 		jj += *info;
 
- 		if (ap[jj] == 0.) {
 
- 		    return 0;
 
- 		}
 
- /* L10: */
 
- 	    }
 
- 	} else {
 
- 	    jj = 1;
 
- 	    i__1 = *n;
 
- 	    for (*info = 1; *info <= i__1; ++(*info)) {
 
- 		if (ap[jj] == 0.) {
 
- 		    return 0;
 
- 		}
 
- 		jj = jj + *n - *info + 1;
 
- /* L20: */
 
- 	    }
 
- 	}
 
- 	*info = 0;
 
-     }
 
-     if (upper) {
 
- /*        Compute inverse of upper triangular matrix. */
 
- 	jc = 1;
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    if (nounit) {
 
- 		ap[jc + j - 1] = 1. / ap[jc + j - 1];
 
- 		ajj = -ap[jc + j - 1];
 
- 	    } else {
 
- 		ajj = -1.;
 
- 	    }
 
- /*           Compute elements 1:j-1 of j-th column. */
 
- 	    i__2 = j - 1;
 
- 	    dtpmv_("Upper", "No transpose", diag, &i__2, &ap[1], &ap[jc], &
 
- 		    c__1);
 
- 	    i__2 = j - 1;
 
- 	    dscal_(&i__2, &ajj, &ap[jc], &c__1);
 
- 	    jc += j;
 
- /* L30: */
 
- 	}
 
-     } else {
 
- /*        Compute inverse of lower triangular matrix. */
 
- 	jc = *n * (*n + 1) / 2;
 
- 	for (j = *n; j >= 1; --j) {
 
- 	    if (nounit) {
 
- 		ap[jc] = 1. / ap[jc];
 
- 		ajj = -ap[jc];
 
- 	    } else {
 
- 		ajj = -1.;
 
- 	    }
 
- 	    if (j < *n) {
 
- /*              Compute elements j+1:n of j-th column. */
 
- 		i__1 = *n - j;
 
- 		dtpmv_("Lower", "No transpose", diag, &i__1, &ap[jclast], &ap[
 
- 			jc + 1], &c__1);
 
- 		i__1 = *n - j;
 
- 		dscal_(&i__1, &ajj, &ap[jc + 1], &c__1);
 
- 	    }
 
- 	    jclast = jc;
 
- 	    jc = jc - *n + j - 2;
 
- /* L40: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DTPTRI */
 
- } /* dtptri_ */
 
 
  |