| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 | /* dstevd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dstevd_(char *jobz, integer *n, doublereal *d__, 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 	integer *lwork, integer *iwork, integer *liwork, integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal eps, rmin, rmax, tnrm;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal sigma;    extern logical lsame_(char *, char *);    integer lwmin;    logical wantz;    extern doublereal dlamch_(char *);    integer iscale;    extern /* Subroutine */ int dstedc_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    integer *, integer *, integer *);    doublereal safmin;    extern /* Subroutine */ int xerbla_(char *, integer *);    doublereal bignum;    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);    extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 	     integer *);    integer liwmin;    doublereal smlnum;    logical lquery;/*  -- LAPACK driver routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTEVD computes all eigenvalues and, optionally, eigenvectors of a *//*  real symmetric tridiagonal matrix. If eigenvectors are desired, it *//*  uses a divide and conquer algorithm. *//*  The divide and conquer algorithm makes very mild assumptions about *//*  floating point arithmetic. It will work on machines with a guard *//*  digit in add/subtract, or on those binary machines without guard *//*  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or *//*  Cray-2. It could conceivably fail on hexadecimal or decimal machines *//*  without guard digits, but we know of none. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the n diagonal elements of the tridiagonal matrix *//*          A. *//*          On exit, if INFO = 0, the eigenvalues in ascending order. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) *//*          On entry, the (n-1) subdiagonal elements of the tridiagonal *//*          matrix A, stored in elements 1 to N-1 of E. *//*          On exit, the contents of E are destroyed. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, N) *//*          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal *//*          eigenvectors of the matrix A, with the i-th column of Z *//*          holding the eigenvector associated with D(i). *//*          If JOBZ = 'N', then Z is not referenced. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', LDZ >= max(1,N). *//*  WORK    (workspace/output) DOUBLE PRECISION array, *//*                                         dimension (LWORK) *//*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. *//*          If JOBZ  = 'N' or N <= 1 then LWORK must be at least 1. *//*          If JOBZ  = 'V' and N > 1 then LWORK must be at least *//*                         ( 1 + 4*N + N**2 ). *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal sizes of the WORK and IWORK *//*          arrays, returns these values as the first entries of the WORK *//*          and IWORK arrays, and no error message related to LWORK or *//*          LIWORK is issued by XERBLA. *//*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) *//*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK. *//*          If JOBZ  = 'N' or N <= 1 then LIWORK must be at least 1. *//*          If JOBZ  = 'V' and N > 1 then LIWORK must be at least 3+5*N. *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the optimal sizes of the WORK and *//*          IWORK arrays, returns these values as the first entries of *//*          the WORK and IWORK arrays, and no error message related to *//*          LWORK or LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the algorithm failed to converge; i *//*                off-diagonal elements of E did not converge to zero. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --work;    --iwork;    /* Function Body */    wantz = lsame_(jobz, "V");    lquery = *lwork == -1 || *liwork == -1;    *info = 0;    liwmin = 1;    lwmin = 1;    if (*n > 1 && wantz) {/* Computing 2nd power */	i__1 = *n;	lwmin = (*n << 2) + 1 + i__1 * i__1;	liwmin = *n * 5 + 3;    }    if (! (wantz || lsame_(jobz, "N"))) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*ldz < 1 || wantz && *ldz < *n) {	*info = -6;    }    if (*info == 0) {	work[1] = (doublereal) lwmin;	iwork[1] = liwmin;	if (*lwork < lwmin && ! lquery) {	    *info = -8;	} else if (*liwork < liwmin && ! lquery) {	    *info = -10;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSTEVD", &i__1);	return 0;    } else if (lquery) {	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (wantz) {	    z__[z_dim1 + 1] = 1.;	}	return 0;    }/*     Get machine constants. */    safmin = dlamch_("Safe minimum");    eps = dlamch_("Precision");    smlnum = safmin / eps;    bignum = 1. / smlnum;    rmin = sqrt(smlnum);    rmax = sqrt(bignum);/*     Scale matrix to allowable range, if necessary. */    iscale = 0;    tnrm = dlanst_("M", n, &d__[1], &e[1]);    if (tnrm > 0. && tnrm < rmin) {	iscale = 1;	sigma = rmin / tnrm;    } else if (tnrm > rmax) {	iscale = 1;	sigma = rmax / tnrm;    }    if (iscale == 1) {	dscal_(n, &sigma, &d__[1], &c__1);	i__1 = *n - 1;	dscal_(&i__1, &sigma, &e[1], &c__1);    }/*     For eigenvalues only, call DSTERF.  For eigenvalues and *//*     eigenvectors, call DSTEDC. */    if (! wantz) {	dsterf_(n, &d__[1], &e[1], info);    } else {	dstedc_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], lwork, 		&iwork[1], liwork, info);    }/*     If matrix was scaled, then rescale eigenvalues appropriately. */    if (iscale == 1) {	d__1 = 1. / sigma;	dscal_(n, &d__1, &d__[1], &c__1);    }    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    return 0;/*     End of DSTEVD */} /* dstevd_ */
 |