| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775 | 
							- /* dstebz.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c_n1 = -1;
 
- static integer c__3 = 3;
 
- static integer c__2 = 2;
 
- static integer c__0 = 0;
 
- /* Subroutine */ int dstebz_(char *range, char *order, integer *n, doublereal 
 
- 	*vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, 
 
- 	doublereal *d__, doublereal *e, integer *m, integer *nsplit, 
 
- 	doublereal *w, integer *iblock, integer *isplit, doublereal *work, 
 
- 	integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2, i__3;
 
-     doublereal d__1, d__2, d__3, d__4, d__5;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), log(doublereal);
 
-     /* Local variables */
 
-     integer j, ib, jb, ie, je, nb;
 
-     doublereal gl;
 
-     integer im, in;
 
-     doublereal gu;
 
-     integer iw;
 
-     doublereal wl, wu;
 
-     integer nwl;
 
-     doublereal ulp, wlu, wul;
 
-     integer nwu;
 
-     doublereal tmp1, tmp2;
 
-     integer iend, ioff, iout, itmp1, jdisc;
 
-     extern logical lsame_(char *, char *);
 
-     integer iinfo;
 
-     doublereal atoli;
 
-     integer iwoff;
 
-     doublereal bnorm;
 
-     integer itmax;
 
-     doublereal wkill, rtoli, tnorm;
 
-     extern doublereal dlamch_(char *);
 
-     integer ibegin;
 
-     extern /* Subroutine */ int dlaebz_(integer *, integer *, integer *, 
 
- 	    integer *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 
- 	     doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *);
 
-     integer irange, idiscl;
 
-     doublereal safemn;
 
-     integer idumma[1];
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     integer idiscu, iorder;
 
-     logical ncnvrg;
 
-     doublereal pivmin;
 
-     logical toofew;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     8-18-00:  Increase FUDGE factor for T3E (eca) */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSTEBZ computes the eigenvalues of a symmetric tridiagonal */
 
- /*  matrix T.  The user may ask for all eigenvalues, all eigenvalues */
 
- /*  in the half-open interval (VL, VU], or the IL-th through IU-th */
 
- /*  eigenvalues. */
 
- /*  To avoid overflow, the matrix must be scaled so that its */
 
- /*  largest element is no greater than overflow**(1/2) * */
 
- /*  underflow**(1/4) in absolute value, and for greatest */
 
- /*  accuracy, it should not be much smaller than that. */
 
- /*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal */
 
- /*  Matrix", Report CS41, Computer Science Dept., Stanford */
 
- /*  University, July 21, 1966. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  RANGE   (input) CHARACTER*1 */
 
- /*          = 'A': ("All")   all eigenvalues will be found. */
 
- /*          = 'V': ("Value") all eigenvalues in the half-open interval */
 
- /*                           (VL, VU] will be found. */
 
- /*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
 
- /*                           entire matrix) will be found. */
 
- /*  ORDER   (input) CHARACTER*1 */
 
- /*          = 'B': ("By Block") the eigenvalues will be grouped by */
 
- /*                              split-off block (see IBLOCK, ISPLIT) and */
 
- /*                              ordered from smallest to largest within */
 
- /*                              the block. */
 
- /*          = 'E': ("Entire matrix") */
 
- /*                              the eigenvalues for the entire matrix */
 
- /*                              will be ordered from smallest to */
 
- /*                              largest. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the tridiagonal matrix T.  N >= 0. */
 
- /*  VL      (input) DOUBLE PRECISION */
 
- /*  VU      (input) DOUBLE PRECISION */
 
- /*          If RANGE='V', the lower and upper bounds of the interval to */
 
- /*          be searched for eigenvalues.  Eigenvalues less than or equal */
 
- /*          to VL, or greater than VU, will not be returned.  VL < VU. */
 
- /*          Not referenced if RANGE = 'A' or 'I'. */
 
- /*  IL      (input) INTEGER */
 
- /*  IU      (input) INTEGER */
 
- /*          If RANGE='I', the indices (in ascending order) of the */
 
- /*          smallest and largest eigenvalues to be returned. */
 
- /*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 
- /*          Not referenced if RANGE = 'A' or 'V'. */
 
- /*  ABSTOL  (input) DOUBLE PRECISION */
 
- /*          The absolute tolerance for the eigenvalues.  An eigenvalue */
 
- /*          (or cluster) is considered to be located if it has been */
 
- /*          determined to lie in an interval whose width is ABSTOL or */
 
- /*          less.  If ABSTOL is less than or equal to zero, then ULP*|T| */
 
- /*          will be used, where |T| means the 1-norm of T. */
 
- /*          Eigenvalues will be computed most accurately when ABSTOL is */
 
- /*          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The n diagonal elements of the tridiagonal matrix T. */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) off-diagonal elements of the tridiagonal matrix T. */
 
- /*  M       (output) INTEGER */
 
- /*          The actual number of eigenvalues found. 0 <= M <= N. */
 
- /*          (See also the description of INFO=2,3.) */
 
- /*  NSPLIT  (output) INTEGER */
 
- /*          The number of diagonal blocks in the matrix T. */
 
- /*          1 <= NSPLIT <= N. */
 
- /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On exit, the first M elements of W will contain the */
 
- /*          eigenvalues.  (DSTEBZ may use the remaining N-M elements as */
 
- /*          workspace.) */
 
- /*  IBLOCK  (output) INTEGER array, dimension (N) */
 
- /*          At each row/column j where E(j) is zero or small, the */
 
- /*          matrix T is considered to split into a block diagonal */
 
- /*          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which */
 
- /*          block (from 1 to the number of blocks) the eigenvalue W(i) */
 
- /*          belongs.  (DSTEBZ may use the remaining N-M elements as */
 
- /*          workspace.) */
 
- /*  ISPLIT  (output) INTEGER array, dimension (N) */
 
- /*          The splitting points, at which T breaks up into submatrices. */
 
- /*          The first submatrix consists of rows/columns 1 to ISPLIT(1), */
 
- /*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
 
- /*          etc., and the NSPLIT-th consists of rows/columns */
 
- /*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
 
- /*          (Only the first NSPLIT elements will actually be used, but */
 
- /*          since the user cannot know a priori what value NSPLIT will */
 
- /*          have, N words must be reserved for ISPLIT.) */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (3*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  some or all of the eigenvalues failed to converge or */
 
- /*                were not computed: */
 
- /*                =1 or 3: Bisection failed to converge for some */
 
- /*                        eigenvalues; these eigenvalues are flagged by a */
 
- /*                        negative block number.  The effect is that the */
 
- /*                        eigenvalues may not be as accurate as the */
 
- /*                        absolute and relative tolerances.  This is */
 
- /*                        generally caused by unexpectedly inaccurate */
 
- /*                        arithmetic. */
 
- /*                =2 or 3: RANGE='I' only: Not all of the eigenvalues */
 
- /*                        IL:IU were found. */
 
- /*                        Effect: M < IU+1-IL */
 
- /*                        Cause:  non-monotonic arithmetic, causing the */
 
- /*                                Sturm sequence to be non-monotonic. */
 
- /*                        Cure:   recalculate, using RANGE='A', and pick */
 
- /*                                out eigenvalues IL:IU.  In some cases, */
 
- /*                                increasing the PARAMETER "FUDGE" may */
 
- /*                                make things work. */
 
- /*                = 4:    RANGE='I', and the Gershgorin interval */
 
- /*                        initially used was too small.  No eigenvalues */
 
- /*                        were computed. */
 
- /*                        Probable cause: your machine has sloppy */
 
- /*                                        floating-point arithmetic. */
 
- /*                        Cure: Increase the PARAMETER "FUDGE", */
 
- /*                              recompile, and try again. */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  RELFAC  DOUBLE PRECISION, default = 2.0e0 */
 
- /*          The relative tolerance.  An interval (a,b] lies within */
 
- /*          "relative tolerance" if  b-a < RELFAC*ulp*max(|a|,|b|), */
 
- /*          where "ulp" is the machine precision (distance from 1 to */
 
- /*          the next larger floating point number.) */
 
- /*  FUDGE   DOUBLE PRECISION, default = 2 */
 
- /*          A "fudge factor" to widen the Gershgorin intervals.  Ideally, */
 
- /*          a value of 1 should work, but on machines with sloppy */
 
- /*          arithmetic, this needs to be larger.  The default for */
 
- /*          publicly released versions should be large enough to handle */
 
- /*          the worst machine around.  Note that this has no effect */
 
- /*          on accuracy of the solution. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --iwork;
 
-     --work;
 
-     --isplit;
 
-     --iblock;
 
-     --w;
 
-     --e;
 
-     --d__;
 
-     /* Function Body */
 
-     *info = 0;
 
- /*     Decode RANGE */
 
-     if (lsame_(range, "A")) {
 
- 	irange = 1;
 
-     } else if (lsame_(range, "V")) {
 
- 	irange = 2;
 
-     } else if (lsame_(range, "I")) {
 
- 	irange = 3;
 
-     } else {
 
- 	irange = 0;
 
-     }
 
- /*     Decode ORDER */
 
-     if (lsame_(order, "B")) {
 
- 	iorder = 2;
 
-     } else if (lsame_(order, "E")) {
 
- 	iorder = 1;
 
-     } else {
 
- 	iorder = 0;
 
-     }
 
- /*     Check for Errors */
 
-     if (irange <= 0) {
 
- 	*info = -1;
 
-     } else if (iorder <= 0) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -3;
 
-     } else if (irange == 2) {
 
- 	if (*vl >= *vu) {
 
- 	    *info = -5;
 
- 	}
 
-     } else if (irange == 3 && (*il < 1 || *il > max(1,*n))) {
 
- 	*info = -6;
 
-     } else if (irange == 3 && (*iu < min(*n,*il) || *iu > *n)) {
 
- 	*info = -7;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSTEBZ", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Initialize error flags */
 
-     *info = 0;
 
-     ncnvrg = FALSE_;
 
-     toofew = FALSE_;
 
- /*     Quick return if possible */
 
-     *m = 0;
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Simplifications: */
 
-     if (irange == 3 && *il == 1 && *iu == *n) {
 
- 	irange = 1;
 
-     }
 
- /*     Get machine constants */
 
- /*     NB is the minimum vector length for vector bisection, or 0 */
 
- /*     if only scalar is to be done. */
 
-     safemn = dlamch_("S");
 
-     ulp = dlamch_("P");
 
-     rtoli = ulp * 2.;
 
-     nb = ilaenv_(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1);
 
-     if (nb <= 1) {
 
- 	nb = 0;
 
-     }
 
- /*     Special Case when N=1 */
 
-     if (*n == 1) {
 
- 	*nsplit = 1;
 
- 	isplit[1] = 1;
 
- 	if (irange == 2 && (*vl >= d__[1] || *vu < d__[1])) {
 
- 	    *m = 0;
 
- 	} else {
 
- 	    w[1] = d__[1];
 
- 	    iblock[1] = 1;
 
- 	    *m = 1;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Compute Splitting Points */
 
-     *nsplit = 1;
 
-     work[*n] = 0.;
 
-     pivmin = 1.;
 
- /* DIR$ NOVECTOR */
 
-     i__1 = *n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- /* Computing 2nd power */
 
- 	d__1 = e[j - 1];
 
- 	tmp1 = d__1 * d__1;
 
- /* Computing 2nd power */
 
- 	d__2 = ulp;
 
- 	if ((d__1 = d__[j] * d__[j - 1], abs(d__1)) * (d__2 * d__2) + safemn 
 
- 		> tmp1) {
 
- 	    isplit[*nsplit] = j - 1;
 
- 	    ++(*nsplit);
 
- 	    work[j - 1] = 0.;
 
- 	} else {
 
- 	    work[j - 1] = tmp1;
 
- 	    pivmin = max(pivmin,tmp1);
 
- 	}
 
- /* L10: */
 
-     }
 
-     isplit[*nsplit] = *n;
 
-     pivmin *= safemn;
 
- /*     Compute Interval and ATOLI */
 
-     if (irange == 3) {
 
- /*        RANGE='I': Compute the interval containing eigenvalues */
 
- /*                   IL through IU. */
 
- /*        Compute Gershgorin interval for entire (split) matrix */
 
- /*        and use it as the initial interval */
 
- 	gu = d__[1];
 
- 	gl = d__[1];
 
- 	tmp1 = 0.;
 
- 	i__1 = *n - 1;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    tmp2 = sqrt(work[j]);
 
- /* Computing MAX */
 
- 	    d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
 
- 	    gu = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	    d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
 
- 	    gl = min(d__1,d__2);
 
- 	    tmp1 = tmp2;
 
- /* L20: */
 
- 	}
 
- /* Computing MAX */
 
- 	d__1 = gu, d__2 = d__[*n] + tmp1;
 
- 	gu = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	d__1 = gl, d__2 = d__[*n] - tmp1;
 
- 	gl = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	d__1 = abs(gl), d__2 = abs(gu);
 
- 	tnorm = max(d__1,d__2);
 
- 	gl = gl - tnorm * 2.1 * ulp * *n - pivmin * 4.2000000000000002;
 
- 	gu = gu + tnorm * 2.1 * ulp * *n + pivmin * 2.1;
 
- /*        Compute Iteration parameters */
 
- 	itmax = (integer) ((log(tnorm + pivmin) - log(pivmin)) / log(2.)) + 2;
 
- 	if (*abstol <= 0.) {
 
- 	    atoli = ulp * tnorm;
 
- 	} else {
 
- 	    atoli = *abstol;
 
- 	}
 
- 	work[*n + 1] = gl;
 
- 	work[*n + 2] = gl;
 
- 	work[*n + 3] = gu;
 
- 	work[*n + 4] = gu;
 
- 	work[*n + 5] = gl;
 
- 	work[*n + 6] = gu;
 
- 	iwork[1] = -1;
 
- 	iwork[2] = -1;
 
- 	iwork[3] = *n + 1;
 
- 	iwork[4] = *n + 1;
 
- 	iwork[5] = *il - 1;
 
- 	iwork[6] = *iu;
 
- 	dlaebz_(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, &pivmin, 
 
- 		&d__[1], &e[1], &work[1], &iwork[5], &work[*n + 1], &work[*n 
 
- 		+ 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);
 
- 	if (iwork[6] == *iu) {
 
- 	    wl = work[*n + 1];
 
- 	    wlu = work[*n + 3];
 
- 	    nwl = iwork[1];
 
- 	    wu = work[*n + 4];
 
- 	    wul = work[*n + 2];
 
- 	    nwu = iwork[4];
 
- 	} else {
 
- 	    wl = work[*n + 2];
 
- 	    wlu = work[*n + 4];
 
- 	    nwl = iwork[2];
 
- 	    wu = work[*n + 3];
 
- 	    wul = work[*n + 1];
 
- 	    nwu = iwork[3];
 
- 	}
 
- 	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
 
- 	    *info = 4;
 
- 	    return 0;
 
- 	}
 
-     } else {
 
- /*        RANGE='A' or 'V' -- Set ATOLI */
 
- /* Computing MAX */
 
- 	d__3 = abs(d__[1]) + abs(e[1]), d__4 = (d__1 = d__[*n], abs(d__1)) + (
 
- 		d__2 = e[*n - 1], abs(d__2));
 
- 	tnorm = max(d__3,d__4);
 
- 	i__1 = *n - 1;
 
- 	for (j = 2; j <= i__1; ++j) {
 
- /* Computing MAX */
 
- 	    d__4 = tnorm, d__5 = (d__1 = d__[j], abs(d__1)) + (d__2 = e[j - 1]
 
- 		    , abs(d__2)) + (d__3 = e[j], abs(d__3));
 
- 	    tnorm = max(d__4,d__5);
 
- /* L30: */
 
- 	}
 
- 	if (*abstol <= 0.) {
 
- 	    atoli = ulp * tnorm;
 
- 	} else {
 
- 	    atoli = *abstol;
 
- 	}
 
- 	if (irange == 2) {
 
- 	    wl = *vl;
 
- 	    wu = *vu;
 
- 	} else {
 
- 	    wl = 0.;
 
- 	    wu = 0.;
 
- 	}
 
-     }
 
- /*     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU. */
 
- /*     NWL accumulates the number of eigenvalues .le. WL, */
 
- /*     NWU accumulates the number of eigenvalues .le. WU */
 
-     *m = 0;
 
-     iend = 0;
 
-     *info = 0;
 
-     nwl = 0;
 
-     nwu = 0;
 
-     i__1 = *nsplit;
 
-     for (jb = 1; jb <= i__1; ++jb) {
 
- 	ioff = iend;
 
- 	ibegin = ioff + 1;
 
- 	iend = isplit[jb];
 
- 	in = iend - ioff;
 
- 	if (in == 1) {
 
- /*           Special Case -- IN=1 */
 
- 	    if (irange == 1 || wl >= d__[ibegin] - pivmin) {
 
- 		++nwl;
 
- 	    }
 
- 	    if (irange == 1 || wu >= d__[ibegin] - pivmin) {
 
- 		++nwu;
 
- 	    }
 
- 	    if (irange == 1 || wl < d__[ibegin] - pivmin && wu >= d__[ibegin] 
 
- 		    - pivmin) {
 
- 		++(*m);
 
- 		w[*m] = d__[ibegin];
 
- 		iblock[*m] = jb;
 
- 	    }
 
- 	} else {
 
- /*           General Case -- IN > 1 */
 
- /*           Compute Gershgorin Interval */
 
- /*           and use it as the initial interval */
 
- 	    gu = d__[ibegin];
 
- 	    gl = d__[ibegin];
 
- 	    tmp1 = 0.;
 
- 	    i__2 = iend - 1;
 
- 	    for (j = ibegin; j <= i__2; ++j) {
 
- 		tmp2 = (d__1 = e[j], abs(d__1));
 
- /* Computing MAX */
 
- 		d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
 
- 		gu = max(d__1,d__2);
 
- /* Computing MIN */
 
- 		d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
 
- 		gl = min(d__1,d__2);
 
- 		tmp1 = tmp2;
 
- /* L40: */
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__1 = gu, d__2 = d__[iend] + tmp1;
 
- 	    gu = max(d__1,d__2);
 
- /* Computing MIN */
 
- 	    d__1 = gl, d__2 = d__[iend] - tmp1;
 
- 	    gl = min(d__1,d__2);
 
- /* Computing MAX */
 
- 	    d__1 = abs(gl), d__2 = abs(gu);
 
- 	    bnorm = max(d__1,d__2);
 
- 	    gl = gl - bnorm * 2.1 * ulp * in - pivmin * 2.1;
 
- 	    gu = gu + bnorm * 2.1 * ulp * in + pivmin * 2.1;
 
- /*           Compute ATOLI for the current submatrix */
 
- 	    if (*abstol <= 0.) {
 
- /* Computing MAX */
 
- 		d__1 = abs(gl), d__2 = abs(gu);
 
- 		atoli = ulp * max(d__1,d__2);
 
- 	    } else {
 
- 		atoli = *abstol;
 
- 	    }
 
- 	    if (irange > 1) {
 
- 		if (gu < wl) {
 
- 		    nwl += in;
 
- 		    nwu += in;
 
- 		    goto L70;
 
- 		}
 
- 		gl = max(gl,wl);
 
- 		gu = min(gu,wu);
 
- 		if (gl >= gu) {
 
- 		    goto L70;
 
- 		}
 
- 	    }
 
- /*           Set Up Initial Interval */
 
- 	    work[*n + 1] = gl;
 
- 	    work[*n + in + 1] = gu;
 
- 	    dlaebz_(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, &
 
- 		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
 
- 		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
 
- 		    w[*m + 1], &iblock[*m + 1], &iinfo);
 
- 	    nwl += iwork[1];
 
- 	    nwu += iwork[in + 1];
 
- 	    iwoff = *m - iwork[1];
 
- /*           Compute Eigenvalues */
 
- 	    itmax = (integer) ((log(gu - gl + pivmin) - log(pivmin)) / log(2.)
 
- 		    ) + 2;
 
- 	    dlaebz_(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, &
 
- 		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
 
- 		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1], 
 
- 		     &w[*m + 1], &iblock[*m + 1], &iinfo);
 
- /*           Copy Eigenvalues Into W and IBLOCK */
 
- /*           Use -JB for block number for unconverged eigenvalues. */
 
- 	    i__2 = iout;
 
- 	    for (j = 1; j <= i__2; ++j) {
 
- 		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;
 
- /*              Flag non-convergence. */
 
- 		if (j > iout - iinfo) {
 
- 		    ncnvrg = TRUE_;
 
- 		    ib = -jb;
 
- 		} else {
 
- 		    ib = jb;
 
- 		}
 
- 		i__3 = iwork[j + in] + iwoff;
 
- 		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
 
- 		    w[je] = tmp1;
 
- 		    iblock[je] = ib;
 
- /* L50: */
 
- 		}
 
- /* L60: */
 
- 	    }
 
- 	    *m += im;
 
- 	}
 
- L70:
 
- 	;
 
-     }
 
- /*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU */
 
- /*     If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */
 
-     if (irange == 3) {
 
- 	im = 0;
 
- 	idiscl = *il - 1 - nwl;
 
- 	idiscu = nwu - *iu;
 
- 	if (idiscl > 0 || idiscu > 0) {
 
- 	    i__1 = *m;
 
- 	    for (je = 1; je <= i__1; ++je) {
 
- 		if (w[je] <= wlu && idiscl > 0) {
 
- 		    --idiscl;
 
- 		} else if (w[je] >= wul && idiscu > 0) {
 
- 		    --idiscu;
 
- 		} else {
 
- 		    ++im;
 
- 		    w[im] = w[je];
 
- 		    iblock[im] = iblock[je];
 
- 		}
 
- /* L80: */
 
- 	    }
 
- 	    *m = im;
 
- 	}
 
- 	if (idiscl > 0 || idiscu > 0) {
 
- /*           Code to deal with effects of bad arithmetic: */
 
- /*           Some low eigenvalues to be discarded are not in (WL,WLU], */
 
- /*           or high eigenvalues to be discarded are not in (WUL,WU] */
 
- /*           so just kill off the smallest IDISCL/largest IDISCU */
 
- /*           eigenvalues, by simply finding the smallest/largest */
 
- /*           eigenvalue(s). */
 
- /*           (If N(w) is monotone non-decreasing, this should never */
 
- /*               happen.) */
 
- 	    if (idiscl > 0) {
 
- 		wkill = wu;
 
- 		i__1 = idiscl;
 
- 		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
 
- 		    iw = 0;
 
- 		    i__2 = *m;
 
- 		    for (je = 1; je <= i__2; ++je) {
 
- 			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
 
- 			    iw = je;
 
- 			    wkill = w[je];
 
- 			}
 
- /* L90: */
 
- 		    }
 
- 		    iblock[iw] = 0;
 
- /* L100: */
 
- 		}
 
- 	    }
 
- 	    if (idiscu > 0) {
 
- 		wkill = wl;
 
- 		i__1 = idiscu;
 
- 		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
 
- 		    iw = 0;
 
- 		    i__2 = *m;
 
- 		    for (je = 1; je <= i__2; ++je) {
 
- 			if (iblock[je] != 0 && (w[je] > wkill || iw == 0)) {
 
- 			    iw = je;
 
- 			    wkill = w[je];
 
- 			}
 
- /* L110: */
 
- 		    }
 
- 		    iblock[iw] = 0;
 
- /* L120: */
 
- 		}
 
- 	    }
 
- 	    im = 0;
 
- 	    i__1 = *m;
 
- 	    for (je = 1; je <= i__1; ++je) {
 
- 		if (iblock[je] != 0) {
 
- 		    ++im;
 
- 		    w[im] = w[je];
 
- 		    iblock[im] = iblock[je];
 
- 		}
 
- /* L130: */
 
- 	    }
 
- 	    *m = im;
 
- 	}
 
- 	if (idiscl < 0 || idiscu < 0) {
 
- 	    toofew = TRUE_;
 
- 	}
 
-     }
 
- /*     If ORDER='B', do nothing -- the eigenvalues are already sorted */
 
- /*        by block. */
 
- /*     If ORDER='E', sort the eigenvalues from smallest to largest */
 
-     if (iorder == 1 && *nsplit > 1) {
 
- 	i__1 = *m - 1;
 
- 	for (je = 1; je <= i__1; ++je) {
 
- 	    ie = 0;
 
- 	    tmp1 = w[je];
 
- 	    i__2 = *m;
 
- 	    for (j = je + 1; j <= i__2; ++j) {
 
- 		if (w[j] < tmp1) {
 
- 		    ie = j;
 
- 		    tmp1 = w[j];
 
- 		}
 
- /* L140: */
 
- 	    }
 
- 	    if (ie != 0) {
 
- 		itmp1 = iblock[ie];
 
- 		w[ie] = w[je];
 
- 		iblock[ie] = iblock[je];
 
- 		w[je] = tmp1;
 
- 		iblock[je] = itmp1;
 
- 	    }
 
- /* L150: */
 
- 	}
 
-     }
 
-     *info = 0;
 
-     if (ncnvrg) {
 
- 	++(*info);
 
-     }
 
-     if (toofew) {
 
- 	*info += 2;
 
-     }
 
-     return 0;
 
- /*     End of DSTEBZ */
 
- } /* dstebz_ */
 
 
  |