| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 | 
							- /* dptsvx.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dptsvx_(char *fact, integer *n, integer *nrhs, 
 
- 	doublereal *d__, doublereal *e, doublereal *df, doublereal *ef, 
 
- 	doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
 
- 	rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
 
- 	info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, x_dim1, x_offset, i__1;
 
-     /* Local variables */
 
-     extern logical lsame_(char *, char *);
 
-     doublereal anorm;
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     extern doublereal dlamch_(char *);
 
-     logical nofact;
 
-     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    xerbla_(char *, integer *);
 
-     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
 
-     extern /* Subroutine */ int dptcon_(integer *, doublereal *, doublereal *, 
 
- 	     doublereal *, doublereal *, doublereal *, integer *), dptrfs_(
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *), dpttrf_(
 
- 	    integer *, doublereal *, doublereal *, integer *), dpttrs_(
 
- 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	    integer *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPTSVX uses the factorization A = L*D*L**T to compute the solution */
 
- /*  to a real system of linear equations A*X = B, where A is an N-by-N */
 
- /*  symmetric positive definite tridiagonal matrix and X and B are */
 
- /*  N-by-NRHS matrices. */
 
- /*  Error bounds on the solution and a condition estimate are also */
 
- /*  provided. */
 
- /*  Description */
 
- /*  =========== */
 
- /*  The following steps are performed: */
 
- /*  1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L */
 
- /*     is a unit lower bidiagonal matrix and D is diagonal.  The */
 
- /*     factorization can also be regarded as having the form */
 
- /*     A = U**T*D*U. */
 
- /*  2. If the leading i-by-i principal minor is not positive definite, */
 
- /*     then the routine returns with INFO = i. Otherwise, the factored */
 
- /*     form of A is used to estimate the condition number of the matrix */
 
- /*     A.  If the reciprocal of the condition number is less than machine */
 
- /*     precision, INFO = N+1 is returned as a warning, but the routine */
 
- /*     still goes on to solve for X and compute error bounds as */
 
- /*     described below. */
 
- /*  3. The system of equations is solved for X using the factored form */
 
- /*     of A. */
 
- /*  4. Iterative refinement is applied to improve the computed solution */
 
- /*     matrix and calculate error bounds and backward error estimates */
 
- /*     for it. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  FACT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not the factored form of A has been */
 
- /*          supplied on entry. */
 
- /*          = 'F':  On entry, DF and EF contain the factored form of A. */
 
- /*                  D, E, DF, and EF will not be modified. */
 
- /*          = 'N':  The matrix A will be copied to DF and EF and */
 
- /*                  factored. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X.  NRHS >= 0. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The n diagonal elements of the tridiagonal matrix A. */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) subdiagonal elements of the tridiagonal matrix A. */
 
- /*  DF      (input or output) DOUBLE PRECISION array, dimension (N) */
 
- /*          If FACT = 'F', then DF is an input argument and on entry */
 
- /*          contains the n diagonal elements of the diagonal matrix D */
 
- /*          from the L*D*L**T factorization of A. */
 
- /*          If FACT = 'N', then DF is an output argument and on exit */
 
- /*          contains the n diagonal elements of the diagonal matrix D */
 
- /*          from the L*D*L**T factorization of A. */
 
- /*  EF      (input or output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          If FACT = 'F', then EF is an input argument and on entry */
 
- /*          contains the (n-1) subdiagonal elements of the unit */
 
- /*          bidiagonal factor L from the L*D*L**T factorization of A. */
 
- /*          If FACT = 'N', then EF is an output argument and on exit */
 
- /*          contains the (n-1) subdiagonal elements of the unit */
 
- /*          bidiagonal factor L from the L*D*L**T factorization of A. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          The N-by-NRHS right hand side matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  RCOND   (output) DOUBLE PRECISION */
 
- /*          The reciprocal condition number of the matrix A.  If RCOND */
 
- /*          is less than the machine precision (in particular, if */
 
- /*          RCOND = 0), the matrix is singular to working precision. */
 
- /*          This condition is indicated by a return code of INFO > 0. */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j). */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in any */
 
- /*          element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, and i is */
 
- /*                <= N:  the leading minor of order i of A is */
 
- /*                       not positive definite, so the factorization */
 
- /*                       could not be completed, and the solution has not */
 
- /*                       been computed. RCOND = 0 is returned. */
 
- /*                = N+1: U is nonsingular, but RCOND is less than machine */
 
- /*                       precision, meaning that the matrix is singular */
 
- /*                       to working precision.  Nevertheless, the */
 
- /*                       solution and error bounds are computed because */
 
- /*                       there are a number of situations where the */
 
- /*                       computed solution can be more accurate than the */
 
- /*                       value of RCOND would suggest. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     --df;
 
-     --ef;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     nofact = lsame_(fact, "N");
 
-     if (! nofact && ! lsame_(fact, "F")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -9;
 
-     } else if (*ldx < max(1,*n)) {
 
- 	*info = -11;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPTSVX", &i__1);
 
- 	return 0;
 
-     }
 
-     if (nofact) {
 
- /*        Compute the L*D*L' (or U'*D*U) factorization of A. */
 
- 	dcopy_(n, &d__[1], &c__1, &df[1], &c__1);
 
- 	if (*n > 1) {
 
- 	    i__1 = *n - 1;
 
- 	    dcopy_(&i__1, &e[1], &c__1, &ef[1], &c__1);
 
- 	}
 
- 	dpttrf_(n, &df[1], &ef[1], info);
 
- /*        Return if INFO is non-zero. */
 
- 	if (*info > 0) {
 
- 	    *rcond = 0.;
 
- 	    return 0;
 
- 	}
 
-     }
 
- /*     Compute the norm of the matrix A. */
 
-     anorm = dlanst_("1", n, &d__[1], &e[1]);
 
- /*     Compute the reciprocal of the condition number of A. */
 
-     dptcon_(n, &df[1], &ef[1], &anorm, rcond, &work[1], info);
 
- /*     Compute the solution vectors X. */
 
-     dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 
-     dpttrs_(n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info);
 
- /*     Use iterative refinement to improve the computed solutions and */
 
- /*     compute error bounds and backward error estimates for them. */
 
-     dptrfs_(n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], ldb, &x[
 
- 	    x_offset], ldx, &ferr[1], &berr[1], &work[1], info);
 
- /*     Set INFO = N+1 if the matrix is singular to working precision. */
 
-     if (*rcond < dlamch_("Epsilon")) {
 
- 	*info = *n + 1;
 
-     }
 
-     return 0;
 
- /*     End of DPTSVX */
 
- } /* dptsvx_ */
 
 
  |