| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 | 
							- /* dposv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dposv_(char *uplo, integer *n, integer *nrhs, doublereal 
 
- 	*a, integer *lda, doublereal *b, integer *ldb, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1;
 
-     /* Local variables */
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *), dpotrf_(
 
- 	    char *, integer *, doublereal *, integer *, integer *), 
 
- 	    dpotrs_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *);
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPOSV computes the solution to a real system of linear equations */
 
- /*     A * X = B, */
 
- /*  where A is an N-by-N symmetric positive definite matrix and X and B */
 
- /*  are N-by-NRHS matrices. */
 
- /*  The Cholesky decomposition is used to factor A as */
 
- /*     A = U**T* U,  if UPLO = 'U', or */
 
- /*     A = L * L**T,  if UPLO = 'L', */
 
- /*  where U is an upper triangular matrix and L is a lower triangular */
 
- /*  matrix.  The factored form of A is then used to solve the system of */
 
- /*  equations A * X = B. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  Upper triangle of A is stored; */
 
- /*          = 'L':  Lower triangle of A is stored. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of linear equations, i.e., the order of the */
 
- /*          matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 
- /*          N-by-N upper triangular part of A contains the upper */
 
- /*          triangular part of the matrix A, and the strictly lower */
 
- /*          triangular part of A is not referenced.  If UPLO = 'L', the */
 
- /*          leading N-by-N lower triangular part of A contains the lower */
 
- /*          triangular part of the matrix A, and the strictly upper */
 
- /*          triangular part of A is not referenced. */
 
- /*          On exit, if INFO = 0, the factor U or L from the Cholesky */
 
- /*          factorization A = U**T*U or A = L*L**T. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the N-by-NRHS right hand side matrix B. */
 
- /*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*          > 0:  if INFO = i, the leading minor of order i of A is not */
 
- /*                positive definite, so the factorization could not be */
 
- /*                completed, and the solution has not been computed. */
 
- /*  ===================================================================== */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPOSV ", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Compute the Cholesky factorization A = U'*U or A = L*L'. */
 
-     dpotrf_(uplo, n, &a[a_offset], lda, info);
 
-     if (*info == 0) {
 
- /*        Solve the system A*X = B, overwriting B with X. */
 
- 	dpotrs_(uplo, n, nrhs, &a[a_offset], lda, &b[b_offset], ldb, info);
 
-     }
 
-     return 0;
 
- /*     End of DPOSV */
 
- } /* dposv_ */
 
 
  |