| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 | 
							- /* dlaruv.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlaruv_(integer *iseed, integer *n, doublereal *x)
 
- {
 
-     /* Initialized data */
 
-     static integer mm[512]	/* was [128][4] */ = { 494,2637,255,2008,1253,
 
- 	    3344,4084,1739,3143,3468,688,1657,1238,3166,1292,3422,1270,2016,
 
- 	    154,2862,697,1706,491,931,1444,444,3577,3944,2184,1661,3482,657,
 
- 	    3023,3618,1267,1828,164,3798,3087,2400,2870,3876,1905,1593,1797,
 
- 	    1234,3460,328,2861,1950,617,2070,3331,769,1558,2412,2800,189,287,
 
- 	    2045,1227,2838,209,2770,3654,3993,192,2253,3491,2889,2857,2094,
 
- 	    1818,688,1407,634,3231,815,3524,1914,516,164,303,2144,3480,119,
 
- 	    3357,837,2826,2332,2089,3780,1700,3712,150,2000,3375,1621,3090,
 
- 	    3765,1149,3146,33,3082,2741,359,3316,1749,185,2784,2202,2199,1364,
 
- 	    1244,2020,3160,2785,2772,1217,1822,1245,2252,3904,2774,997,2573,
 
- 	    1148,545,322,789,1440,752,2859,123,1848,643,2405,2638,2344,46,
 
- 	    3814,913,3649,339,3808,822,2832,3078,3633,2970,637,2249,2081,4019,
 
- 	    1478,242,481,2075,4058,622,3376,812,234,641,4005,1122,3135,2640,
 
- 	    2302,40,1832,2247,2034,2637,1287,1691,496,1597,2394,2584,1843,336,
 
- 	    1472,2407,433,2096,1761,2810,566,442,41,1238,1086,603,840,3168,
 
- 	    1499,1084,3438,2408,1589,2391,288,26,512,1456,171,1677,2657,2270,
 
- 	    2587,2961,1970,1817,676,1410,3723,2803,3185,184,663,499,3784,1631,
 
- 	    1925,3912,1398,1349,1441,2224,2411,1907,3192,2786,382,37,759,2948,
 
- 	    1862,3802,2423,2051,2295,1332,1832,2405,3638,3661,327,3660,716,
 
- 	    1842,3987,1368,1848,2366,2508,3754,1766,3572,2893,307,1297,3966,
 
- 	    758,2598,3406,2922,1038,2934,2091,2451,1580,1958,2055,1507,1078,
 
- 	    3273,17,854,2916,3971,2889,3831,2621,1541,893,736,3992,787,2125,
 
- 	    2364,2460,257,1574,3912,1216,3248,3401,2124,2762,149,2245,166,466,
 
- 	    4018,1399,190,2879,153,2320,18,712,2159,2318,2091,3443,1510,449,
 
- 	    1956,2201,3137,3399,1321,2271,3667,2703,629,2365,2431,1113,3922,
 
- 	    2554,184,2099,3228,4012,1921,3452,3901,572,3309,3171,817,3039,
 
- 	    1696,1256,3715,2077,3019,1497,1101,717,51,981,1978,1813,3881,76,
 
- 	    3846,3694,1682,124,1660,3997,479,1141,886,3514,1301,3604,1888,
 
- 	    1836,1990,2058,692,1194,20,3285,2046,2107,3508,3525,3801,2549,
 
- 	    1145,2253,305,3301,1065,3133,2913,3285,1241,1197,3729,2501,1673,
 
- 	    541,2753,949,2361,1165,4081,2725,3305,3069,3617,3733,409,2157,
 
- 	    1361,3973,1865,2525,1409,3445,3577,77,3761,2149,1449,3005,225,85,
 
- 	    3673,3117,3089,1349,2057,413,65,1845,697,3085,3441,1573,3689,2941,
 
- 	    929,533,2841,4077,721,2821,2249,2397,2817,245,1913,1997,3121,997,
 
- 	    1833,2877,1633,981,2009,941,2449,197,2441,285,1473,2741,3129,909,
 
- 	    2801,421,4073,2813,2337,1429,1177,1901,81,1669,2633,2269,129,1141,
 
- 	    249,3917,2481,3941,2217,2749,3041,1877,345,2861,1809,3141,2825,
 
- 	    157,2881,3637,1465,2829,2161,3365,361,2685,3745,2325,3609,3821,
 
- 	    3537,517,3017,2141,1537 };
 
-     /* System generated locals */
 
-     integer i__1;
 
-     /* Local variables */
 
-     integer i__, i1, i2, i3, i4, it1, it2, it3, it4;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLARUV returns a vector of n random real numbers from a uniform (0,1) */
 
- /*  distribution (n <= 128). */
 
- /*  This is an auxiliary routine called by DLARNV and ZLARNV. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ISEED   (input/output) INTEGER array, dimension (4) */
 
- /*          On entry, the seed of the random number generator; the array */
 
- /*          elements must be between 0 and 4095, and ISEED(4) must be */
 
- /*          odd. */
 
- /*          On exit, the seed is updated. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of random numbers to be generated. N <= 128. */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          The generated random numbers. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  This routine uses a multiplicative congruential method with modulus */
 
- /*  2**48 and multiplier 33952834046453 (see G.S.Fishman, */
 
- /*  'Multiplicative congruential random number generators with modulus */
 
- /*  2**b: an exhaustive analysis for b = 32 and a partial analysis for */
 
- /*  b = 48', Math. Comp. 189, pp 331-344, 1990). */
 
- /*  48-bit integers are stored in 4 integer array elements with 12 bits */
 
- /*  per element. Hence the routine is portable across machines with */
 
- /*  integers of 32 bits or more. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Data statements .. */
 
-     /* Parameter adjustments */
 
-     --iseed;
 
-     --x;
 
-     /* Function Body */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     i1 = iseed[1];
 
-     i2 = iseed[2];
 
-     i3 = iseed[3];
 
-     i4 = iseed[4];
 
-     i__1 = min(*n,128);
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- L20:
 
- /*        Multiply the seed by i-th power of the multiplier modulo 2**48 */
 
- 	it4 = i4 * mm[i__ + 383];
 
- 	it3 = it4 / 4096;
 
- 	it4 -= it3 << 12;
 
- 	it3 = it3 + i3 * mm[i__ + 383] + i4 * mm[i__ + 255];
 
- 	it2 = it3 / 4096;
 
- 	it3 -= it2 << 12;
 
- 	it2 = it2 + i2 * mm[i__ + 383] + i3 * mm[i__ + 255] + i4 * mm[i__ + 
 
- 		127];
 
- 	it1 = it2 / 4096;
 
- 	it2 -= it1 << 12;
 
- 	it1 = it1 + i1 * mm[i__ + 383] + i2 * mm[i__ + 255] + i3 * mm[i__ + 
 
- 		127] + i4 * mm[i__ - 1];
 
- 	it1 %= 4096;
 
- /*        Convert 48-bit integer to a real number in the interval (0,1) */
 
- 	x[i__] = ((doublereal) it1 + ((doublereal) it2 + ((doublereal) it3 + (
 
- 		doublereal) it4 * 2.44140625e-4) * 2.44140625e-4) * 
 
- 		2.44140625e-4) * 2.44140625e-4;
 
- 	if (x[i__] == 1.) {
 
- /*           If a real number has n bits of precision, and the first */
 
- /*           n bits of the 48-bit integer above happen to be all 1 (which */
 
- /*           will occur about once every 2**n calls), then X( I ) will */
 
- /*           be rounded to exactly 1.0. */
 
- /*           Since X( I ) is not supposed to return exactly 0.0 or 1.0, */
 
- /*           the statistically correct thing to do in this situation is */
 
- /*           simply to iterate again. */
 
- /*           N.B. the case X( I ) = 0.0 should not be possible. */
 
- 	    i1 += 2;
 
- 	    i2 += 2;
 
- 	    i3 += 2;
 
- 	    i4 += 2;
 
- 	    goto L20;
 
- 	}
 
- /* L10: */
 
-     }
 
- /*     Return final value of seed */
 
-     iseed[1] = it1;
 
-     iseed[2] = it2;
 
-     iseed[3] = it3;
 
-     iseed[4] = it4;
 
-     return 0;
 
- /*     End of DLARUV */
 
- } /* dlaruv_ */
 
 
  |