| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 | 
							- /* dlaqsp.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlaqsp_(char *uplo, integer *n, doublereal *ap, 
 
- 	doublereal *s, doublereal *scond, doublereal *amax, char *equed)
 
- {
 
-     /* System generated locals */
 
-     integer i__1, i__2;
 
-     /* Local variables */
 
-     integer i__, j, jc;
 
-     doublereal cj, large;
 
-     extern logical lsame_(char *, char *);
 
-     doublereal small;
 
-     extern doublereal dlamch_(char *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLAQSP equilibrates a symmetric matrix A using the scaling factors */
 
- /*  in the vector S. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the upper or lower triangular part of the */
 
- /*          symmetric matrix A is stored. */
 
- /*          = 'U':  Upper triangular */
 
- /*          = 'L':  Lower triangular */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          On entry, the upper or lower triangle of the symmetric matrix */
 
- /*          A, packed columnwise in a linear array.  The j-th column of A */
 
- /*          is stored in the array AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          On exit, the equilibrated matrix:  diag(S) * A * diag(S), in */
 
- /*          the same storage format as A. */
 
- /*  S       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The scale factors for A. */
 
- /*  SCOND   (input) DOUBLE PRECISION */
 
- /*          Ratio of the smallest S(i) to the largest S(i). */
 
- /*  AMAX    (input) DOUBLE PRECISION */
 
- /*          Absolute value of largest matrix entry. */
 
- /*  EQUED   (output) CHARACTER*1 */
 
- /*          Specifies whether or not equilibration was done. */
 
- /*          = 'N':  No equilibration. */
 
- /*          = 'Y':  Equilibration was done, i.e., A has been replaced by */
 
- /*                  diag(S) * A * diag(S). */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  THRESH is a threshold value used to decide if scaling should be done */
 
- /*  based on the ratio of the scaling factors.  If SCOND < THRESH, */
 
- /*  scaling is done. */
 
- /*  LARGE and SMALL are threshold values used to decide if scaling should */
 
- /*  be done based on the absolute size of the largest matrix element. */
 
- /*  If AMAX > LARGE or AMAX < SMALL, scaling is done. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Quick return if possible */
 
-     /* Parameter adjustments */
 
-     --s;
 
-     --ap;
 
-     /* Function Body */
 
-     if (*n <= 0) {
 
- 	*(unsigned char *)equed = 'N';
 
- 	return 0;
 
-     }
 
- /*     Initialize LARGE and SMALL. */
 
-     small = dlamch_("Safe minimum") / dlamch_("Precision");
 
-     large = 1. / small;
 
-     if (*scond >= .1 && *amax >= small && *amax <= large) {
 
- /*        No equilibration */
 
- 	*(unsigned char *)equed = 'N';
 
-     } else {
 
- /*        Replace A by diag(S) * A * diag(S). */
 
- 	if (lsame_(uplo, "U")) {
 
- /*           Upper triangle of A is stored. */
 
- 	    jc = 1;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		cj = s[j];
 
- 		i__2 = j;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    ap[jc + i__ - 1] = cj * s[i__] * ap[jc + i__ - 1];
 
- /* L10: */
 
- 		}
 
- 		jc += j;
 
- /* L20: */
 
- 	    }
 
- 	} else {
 
- /*           Lower triangle of A is stored. */
 
- 	    jc = 1;
 
- 	    i__1 = *n;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		cj = s[j];
 
- 		i__2 = *n;
 
- 		for (i__ = j; i__ <= i__2; ++i__) {
 
- 		    ap[jc + i__ - j] = cj * s[i__] * ap[jc + i__ - j];
 
- /* L30: */
 
- 		}
 
- 		jc = jc + *n - j + 1;
 
- /* L40: */
 
- 	    }
 
- 	}
 
- 	*(unsigned char *)equed = 'Y';
 
-     }
 
-     return 0;
 
- /*     End of DLAQSP */
 
- } /* dlaqsp_ */
 
 
  |