| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576 | 
							- /* dlaln2.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dlaln2_(logical *ltrans, integer *na, integer *nw, 
 
- 	doublereal *smin, doublereal *ca, doublereal *a, integer *lda, 
 
- 	doublereal *d1, doublereal *d2, doublereal *b, integer *ldb, 
 
- 	doublereal *wr, doublereal *wi, doublereal *x, integer *ldx, 
 
- 	doublereal *scale, doublereal *xnorm, integer *info)
 
- {
 
-     /* Initialized data */
 
-     static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
 
-     static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
 
-     static integer ipivot[16]	/* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
 
- 	    4,3,2,1 };
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
 
-     doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 
-     static doublereal equiv_0[4], equiv_1[4];
 
-     /* Local variables */
 
-     integer j;
 
- #define ci (equiv_0)
 
- #define cr (equiv_1)
 
-     doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22,
 
- 	     li21, csi, ui11, lr21, ui12, ui22;
 
- #define civ (equiv_0)
 
-     doublereal csr, ur11, ur12, ur22;
 
- #define crv (equiv_1)
 
-     doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs;
 
-     integer icmax;
 
-     doublereal bnorm, cnorm, smini;
 
-     extern doublereal dlamch_(char *);
 
-     extern /* Subroutine */ int dladiv_(doublereal *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *);
 
-     doublereal bignum, smlnum;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLALN2 solves a system of the form  (ca A - w D ) X = s B */
 
- /*  or (ca A' - w D) X = s B   with possible scaling ("s") and */
 
- /*  perturbation of A.  (A' means A-transpose.) */
 
- /*  A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
 
- /*  real diagonal matrix, w is a real or complex value, and X and B are */
 
- /*  NA x 1 matrices -- real if w is real, complex if w is complex.  NA */
 
- /*  may be 1 or 2. */
 
- /*  If w is complex, X and B are represented as NA x 2 matrices, */
 
- /*  the first column of each being the real part and the second */
 
- /*  being the imaginary part. */
 
- /*  "s" is a scaling factor (.LE. 1), computed by DLALN2, which is */
 
- /*  so chosen that X can be computed without overflow.  X is further */
 
- /*  scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
 
- /*  than overflow. */
 
- /*  If both singular values of (ca A - w D) are less than SMIN, */
 
- /*  SMIN*identity will be used instead of (ca A - w D).  If only one */
 
- /*  singular value is less than SMIN, one element of (ca A - w D) will be */
 
- /*  perturbed enough to make the smallest singular value roughly SMIN. */
 
- /*  If both singular values are at least SMIN, (ca A - w D) will not be */
 
- /*  perturbed.  In any case, the perturbation will be at most some small */
 
- /*  multiple of max( SMIN, ulp*norm(ca A - w D) ).  The singular values */
 
- /*  are computed by infinity-norm approximations, and thus will only be */
 
- /*  correct to a factor of 2 or so. */
 
- /*  Note: all input quantities are assumed to be smaller than overflow */
 
- /*  by a reasonable factor.  (See BIGNUM.) */
 
- /*  Arguments */
 
- /*  ========== */
 
- /*  LTRANS  (input) LOGICAL */
 
- /*          =.TRUE.:  A-transpose will be used. */
 
- /*          =.FALSE.: A will be used (not transposed.) */
 
- /*  NA      (input) INTEGER */
 
- /*          The size of the matrix A.  It may (only) be 1 or 2. */
 
- /*  NW      (input) INTEGER */
 
- /*          1 if "w" is real, 2 if "w" is complex.  It may only be 1 */
 
- /*          or 2. */
 
- /*  SMIN    (input) DOUBLE PRECISION */
 
- /*          The desired lower bound on the singular values of A.  This */
 
- /*          should be a safe distance away from underflow or overflow, */
 
- /*          say, between (underflow/machine precision) and  (machine */
 
- /*          precision * overflow ).  (See BIGNUM and ULP.) */
 
- /*  CA      (input) DOUBLE PRECISION */
 
- /*          The coefficient c, which A is multiplied by. */
 
- /*  A       (input) DOUBLE PRECISION array, dimension (LDA,NA) */
 
- /*          The NA x NA matrix A. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of A.  It must be at least NA. */
 
- /*  D1      (input) DOUBLE PRECISION */
 
- /*          The 1,1 element in the diagonal matrix D. */
 
- /*  D2      (input) DOUBLE PRECISION */
 
- /*          The 2,2 element in the diagonal matrix D.  Not used if NW=1. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NW) */
 
- /*          The NA x NW matrix B (right-hand side).  If NW=2 ("w" is */
 
- /*          complex), column 1 contains the real part of B and column 2 */
 
- /*          contains the imaginary part. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of B.  It must be at least NA. */
 
- /*  WR      (input) DOUBLE PRECISION */
 
- /*          The real part of the scalar "w". */
 
- /*  WI      (input) DOUBLE PRECISION */
 
- /*          The imaginary part of the scalar "w".  Not used if NW=1. */
 
- /*  X       (output) DOUBLE PRECISION array, dimension (LDX,NW) */
 
- /*          The NA x NW matrix X (unknowns), as computed by DLALN2. */
 
- /*          If NW=2 ("w" is complex), on exit, column 1 will contain */
 
- /*          the real part of X and column 2 will contain the imaginary */
 
- /*          part. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of X.  It must be at least NA. */
 
- /*  SCALE   (output) DOUBLE PRECISION */
 
- /*          The scale factor that B must be multiplied by to insure */
 
- /*          that overflow does not occur when computing X.  Thus, */
 
- /*          (ca A - w D) X  will be SCALE*B, not B (ignoring */
 
- /*          perturbations of A.)  It will be at most 1. */
 
- /*  XNORM   (output) DOUBLE PRECISION */
 
- /*          The infinity-norm of X, when X is regarded as an NA x NW */
 
- /*          real matrix. */
 
- /*  INFO    (output) INTEGER */
 
- /*          An error flag.  It will be set to zero if no error occurs, */
 
- /*          a negative number if an argument is in error, or a positive */
 
- /*          number if  ca A - w D  had to be perturbed. */
 
- /*          The possible values are: */
 
- /*          = 0: No error occurred, and (ca A - w D) did not have to be */
 
- /*                 perturbed. */
 
- /*          = 1: (ca A - w D) had to be perturbed to make its smallest */
 
- /*               (or only) singular value greater than SMIN. */
 
- /*          NOTE: In the interests of speed, this routine does not */
 
- /*                check the inputs for errors. */
 
- /* ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Equivalences .. */
 
- /*     .. */
 
- /*     .. Data statements .. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     /* Function Body */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Compute BIGNUM */
 
-     smlnum = 2. * dlamch_("Safe minimum");
 
-     bignum = 1. / smlnum;
 
-     smini = max(*smin,smlnum);
 
- /*     Don't check for input errors */
 
-     *info = 0;
 
- /*     Standard Initializations */
 
-     *scale = 1.;
 
-     if (*na == 1) {
 
- /*        1 x 1  (i.e., scalar) system   C X = B */
 
- 	if (*nw == 1) {
 
- /*           Real 1x1 system. */
 
- /*           C = ca A - w D */
 
- 	    csr = *ca * a[a_dim1 + 1] - *wr * *d1;
 
- 	    cnorm = abs(csr);
 
- /*           If | C | < SMINI, use C = SMINI */
 
- 	    if (cnorm < smini) {
 
- 		csr = smini;
 
- 		cnorm = smini;
 
- 		*info = 1;
 
- 	    }
 
- /*           Check scaling for  X = B / C */
 
- 	    bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
 
- 	    if (cnorm < 1. && bnorm > 1.) {
 
- 		if (bnorm > bignum * cnorm) {
 
- 		    *scale = 1. / bnorm;
 
- 		}
 
- 	    }
 
- /*           Compute X */
 
- 	    x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
 
- 	    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
 
- 	} else {
 
- /*           Complex 1x1 system (w is complex) */
 
- /*           C = ca A - w D */
 
- 	    csr = *ca * a[a_dim1 + 1] - *wr * *d1;
 
- 	    csi = -(*wi) * *d1;
 
- 	    cnorm = abs(csr) + abs(csi);
 
- /*           If | C | < SMINI, use C = SMINI */
 
- 	    if (cnorm < smini) {
 
- 		csr = smini;
 
- 		csi = 0.;
 
- 		cnorm = smini;
 
- 		*info = 1;
 
- 	    }
 
- /*           Check scaling for  X = B / C */
 
- 	    bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << 
 
- 		    1) + 1], abs(d__2));
 
- 	    if (cnorm < 1. && bnorm > 1.) {
 
- 		if (bnorm > bignum * cnorm) {
 
- 		    *scale = 1. / bnorm;
 
- 		}
 
- 	    }
 
- /*           Compute X */
 
- 	    d__1 = *scale * b[b_dim1 + 1];
 
- 	    d__2 = *scale * b[(b_dim1 << 1) + 1];
 
- 	    dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
 
- 		     + 1]);
 
- 	    *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << 
 
- 		    1) + 1], abs(d__2));
 
- 	}
 
-     } else {
 
- /*        2x2 System */
 
- /*        Compute the real part of  C = ca A - w D  (or  ca A' - w D ) */
 
- 	cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
 
- 	cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
 
- 	if (*ltrans) {
 
- 	    cr[2] = *ca * a[a_dim1 + 2];
 
- 	    cr[1] = *ca * a[(a_dim1 << 1) + 1];
 
- 	} else {
 
- 	    cr[1] = *ca * a[a_dim1 + 2];
 
- 	    cr[2] = *ca * a[(a_dim1 << 1) + 1];
 
- 	}
 
- 	if (*nw == 1) {
 
- /*           Real 2x2 system  (w is real) */
 
- /*           Find the largest element in C */
 
- 	    cmax = 0.;
 
- 	    icmax = 0;
 
- 	    for (j = 1; j <= 4; ++j) {
 
- 		if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
 
- 		    cmax = (d__1 = crv[j - 1], abs(d__1));
 
- 		    icmax = j;
 
- 		}
 
- /* L10: */
 
- 	    }
 
- /*           If norm(C) < SMINI, use SMINI*identity. */
 
- 	    if (cmax < smini) {
 
- /* Computing MAX */
 
- 		d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
 
- 			b_dim1 + 2], abs(d__2));
 
- 		bnorm = max(d__3,d__4);
 
- 		if (smini < 1. && bnorm > 1.) {
 
- 		    if (bnorm > bignum * smini) {
 
- 			*scale = 1. / bnorm;
 
- 		    }
 
- 		}
 
- 		temp = *scale / smini;
 
- 		x[x_dim1 + 1] = temp * b[b_dim1 + 1];
 
- 		x[x_dim1 + 2] = temp * b[b_dim1 + 2];
 
- 		*xnorm = temp * bnorm;
 
- 		*info = 1;
 
- 		return 0;
 
- 	    }
 
- /*           Gaussian elimination with complete pivoting. */
 
- 	    ur11 = crv[icmax - 1];
 
- 	    cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
 
- 	    ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
 
- 	    cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
 
- 	    ur11r = 1. / ur11;
 
- 	    lr21 = ur11r * cr21;
 
- 	    ur22 = cr22 - ur12 * lr21;
 
- /*           If smaller pivot < SMINI, use SMINI */
 
- 	    if (abs(ur22) < smini) {
 
- 		ur22 = smini;
 
- 		*info = 1;
 
- 	    }
 
- 	    if (rswap[icmax - 1]) {
 
- 		br1 = b[b_dim1 + 2];
 
- 		br2 = b[b_dim1 + 1];
 
- 	    } else {
 
- 		br1 = b[b_dim1 + 1];
 
- 		br2 = b[b_dim1 + 2];
 
- 	    }
 
- 	    br2 -= lr21 * br1;
 
- /* Computing MAX */
 
- 	    d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
 
- 	    bbnd = max(d__2,d__3);
 
- 	    if (bbnd > 1. && abs(ur22) < 1.) {
 
- 		if (bbnd >= bignum * abs(ur22)) {
 
- 		    *scale = 1. / bbnd;
 
- 		}
 
- 	    }
 
- 	    xr2 = br2 * *scale / ur22;
 
- 	    xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
 
- 	    if (zswap[icmax - 1]) {
 
- 		x[x_dim1 + 1] = xr2;
 
- 		x[x_dim1 + 2] = xr1;
 
- 	    } else {
 
- 		x[x_dim1 + 1] = xr1;
 
- 		x[x_dim1 + 2] = xr2;
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__1 = abs(xr1), d__2 = abs(xr2);
 
- 	    *xnorm = max(d__1,d__2);
 
- /*           Further scaling if  norm(A) norm(X) > overflow */
 
- 	    if (*xnorm > 1. && cmax > 1.) {
 
- 		if (*xnorm > bignum / cmax) {
 
- 		    temp = cmax / bignum;
 
- 		    x[x_dim1 + 1] = temp * x[x_dim1 + 1];
 
- 		    x[x_dim1 + 2] = temp * x[x_dim1 + 2];
 
- 		    *xnorm = temp * *xnorm;
 
- 		    *scale = temp * *scale;
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           Complex 2x2 system  (w is complex) */
 
- /*           Find the largest element in C */
 
- 	    ci[0] = -(*wi) * *d1;
 
- 	    ci[1] = 0.;
 
- 	    ci[2] = 0.;
 
- 	    ci[3] = -(*wi) * *d2;
 
- 	    cmax = 0.;
 
- 	    icmax = 0;
 
- 	    for (j = 1; j <= 4; ++j) {
 
- 		if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
 
- 			d__2)) > cmax) {
 
- 		    cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
 
- 			    , abs(d__2));
 
- 		    icmax = j;
 
- 		}
 
- /* L20: */
 
- 	    }
 
- /*           If norm(C) < SMINI, use SMINI*identity. */
 
- 	    if (cmax < smini) {
 
- /* Computing MAX */
 
- 		d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 
 
- 			<< 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], 
 
- 			abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
 
- 		bnorm = max(d__5,d__6);
 
- 		if (smini < 1. && bnorm > 1.) {
 
- 		    if (bnorm > bignum * smini) {
 
- 			*scale = 1. / bnorm;
 
- 		    }
 
- 		}
 
- 		temp = *scale / smini;
 
- 		x[x_dim1 + 1] = temp * b[b_dim1 + 1];
 
- 		x[x_dim1 + 2] = temp * b[b_dim1 + 2];
 
- 		x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
 
- 		x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
 
- 		*xnorm = temp * bnorm;
 
- 		*info = 1;
 
- 		return 0;
 
- 	    }
 
- /*           Gaussian elimination with complete pivoting. */
 
- 	    ur11 = crv[icmax - 1];
 
- 	    ui11 = civ[icmax - 1];
 
- 	    cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
 
- 	    ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
 
- 	    ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
 
- 	    ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
 
- 	    cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
 
- 	    ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
 
- 	    if (icmax == 1 || icmax == 4) {
 
- /*              Code when off-diagonals of pivoted C are real */
 
- 		if (abs(ur11) > abs(ui11)) {
 
- 		    temp = ui11 / ur11;
 
- /* Computing 2nd power */
 
- 		    d__1 = temp;
 
- 		    ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
 
- 		    ui11r = -temp * ur11r;
 
- 		} else {
 
- 		    temp = ur11 / ui11;
 
- /* Computing 2nd power */
 
- 		    d__1 = temp;
 
- 		    ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
 
- 		    ur11r = -temp * ui11r;
 
- 		}
 
- 		lr21 = cr21 * ur11r;
 
- 		li21 = cr21 * ui11r;
 
- 		ur12s = ur12 * ur11r;
 
- 		ui12s = ur12 * ui11r;
 
- 		ur22 = cr22 - ur12 * lr21;
 
- 		ui22 = ci22 - ur12 * li21;
 
- 	    } else {
 
- /*              Code when diagonals of pivoted C are real */
 
- 		ur11r = 1. / ur11;
 
- 		ui11r = 0.;
 
- 		lr21 = cr21 * ur11r;
 
- 		li21 = ci21 * ur11r;
 
- 		ur12s = ur12 * ur11r;
 
- 		ui12s = ui12 * ur11r;
 
- 		ur22 = cr22 - ur12 * lr21 + ui12 * li21;
 
- 		ui22 = -ur12 * li21 - ui12 * lr21;
 
- 	    }
 
- 	    u22abs = abs(ur22) + abs(ui22);
 
- /*           If smaller pivot < SMINI, use SMINI */
 
- 	    if (u22abs < smini) {
 
- 		ur22 = smini;
 
- 		ui22 = 0.;
 
- 		*info = 1;
 
- 	    }
 
- 	    if (rswap[icmax - 1]) {
 
- 		br2 = b[b_dim1 + 1];
 
- 		br1 = b[b_dim1 + 2];
 
- 		bi2 = b[(b_dim1 << 1) + 1];
 
- 		bi1 = b[(b_dim1 << 1) + 2];
 
- 	    } else {
 
- 		br1 = b[b_dim1 + 1];
 
- 		br2 = b[b_dim1 + 2];
 
- 		bi1 = b[(b_dim1 << 1) + 1];
 
- 		bi2 = b[(b_dim1 << 1) + 2];
 
- 	    }
 
- 	    br2 = br2 - lr21 * br1 + li21 * bi1;
 
- 	    bi2 = bi2 - li21 * br1 - lr21 * bi1;
 
- /* Computing MAX */
 
- 	    d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
 
- 		    ), d__2 = abs(br2) + abs(bi2);
 
- 	    bbnd = max(d__1,d__2);
 
- 	    if (bbnd > 1. && u22abs < 1.) {
 
- 		if (bbnd >= bignum * u22abs) {
 
- 		    *scale = 1. / bbnd;
 
- 		    br1 = *scale * br1;
 
- 		    bi1 = *scale * bi1;
 
- 		    br2 = *scale * br2;
 
- 		    bi2 = *scale * bi2;
 
- 		}
 
- 	    }
 
- 	    dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
 
- 	    xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
 
- 	    xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
 
- 	    if (zswap[icmax - 1]) {
 
- 		x[x_dim1 + 1] = xr2;
 
- 		x[x_dim1 + 2] = xr1;
 
- 		x[(x_dim1 << 1) + 1] = xi2;
 
- 		x[(x_dim1 << 1) + 2] = xi1;
 
- 	    } else {
 
- 		x[x_dim1 + 1] = xr1;
 
- 		x[x_dim1 + 2] = xr2;
 
- 		x[(x_dim1 << 1) + 1] = xi1;
 
- 		x[(x_dim1 << 1) + 2] = xi2;
 
- 	    }
 
- /* Computing MAX */
 
- 	    d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
 
- 	    *xnorm = max(d__1,d__2);
 
- /*           Further scaling if  norm(A) norm(X) > overflow */
 
- 	    if (*xnorm > 1. && cmax > 1.) {
 
- 		if (*xnorm > bignum / cmax) {
 
- 		    temp = cmax / bignum;
 
- 		    x[x_dim1 + 1] = temp * x[x_dim1 + 1];
 
- 		    x[x_dim1 + 2] = temp * x[x_dim1 + 2];
 
- 		    x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
 
- 		    x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
 
- 		    *xnorm = temp * *xnorm;
 
- 		    *scale = temp * *scale;
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DLALN2 */
 
- } /* dlaln2_ */
 
- #undef crv
 
- #undef civ
 
- #undef cr
 
- #undef ci
 
 
  |