| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550 | 
							- /* dgees.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__0 = 0;
 
- static integer c_n1 = -1;
 
- /* Subroutine */ int dgees_(char *jobvs, char *sort, L_fp select, integer *n, 
 
- 	doublereal *a, integer *lda, integer *sdim, doublereal *wr, 
 
- 	doublereal *wi, doublereal *vs, integer *ldvs, doublereal *work, 
 
- 	integer *lwork, logical *bwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__;
 
-     doublereal s;
 
-     integer i1, i2, ip, ihi, ilo;
 
-     doublereal dum[1], eps, sep;
 
-     integer ibal;
 
-     doublereal anrm;
 
-     integer idum[1], ierr, itau, iwrk, inxt, icond, ieval;
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
 
- 	    *, doublereal *, integer *);
 
-     logical cursl;
 
-     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebak_(
 
- 	    char *, char *, integer *, integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, integer *, integer *), 
 
- 	    dgebal_(char *, integer *, doublereal *, integer *, integer *, 
 
- 	    integer *, doublereal *, integer *);
 
-     logical lst2sl, scalea;
 
-     extern doublereal dlamch_(char *);
 
-     doublereal cscale;
 
-     extern doublereal dlange_(char *, integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *);
 
-     extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *), dlascl_(char *, integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, integer *, doublereal *, integer *, 
 
- 	    integer *), dlacpy_(char *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), 
 
- 	    xerbla_(char *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     doublereal bignum;
 
-     extern /* Subroutine */ int dorghr_(integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    integer *), dhseqr_(char *, char *, integer *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, integer *), dtrsen_(char *, char *, logical *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 
- 	     integer *, integer *, integer *, integer *);
 
-     logical lastsl;
 
-     integer minwrk, maxwrk;
 
-     doublereal smlnum;
 
-     integer hswork;
 
-     logical wantst, lquery, wantvs;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*     .. Function Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEES computes for an N-by-N real nonsymmetric matrix A, the */
 
- /*  eigenvalues, the real Schur form T, and, optionally, the matrix of */
 
- /*  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T). */
 
- /*  Optionally, it also orders the eigenvalues on the diagonal of the */
 
- /*  real Schur form so that selected eigenvalues are at the top left. */
 
- /*  The leading columns of Z then form an orthonormal basis for the */
 
- /*  invariant subspace corresponding to the selected eigenvalues. */
 
- /*  A matrix is in real Schur form if it is upper quasi-triangular with */
 
- /*  1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the */
 
- /*  form */
 
- /*          [  a  b  ] */
 
- /*          [  c  a  ] */
 
- /*  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBVS   (input) CHARACTER*1 */
 
- /*          = 'N': Schur vectors are not computed; */
 
- /*          = 'V': Schur vectors are computed. */
 
- /*  SORT    (input) CHARACTER*1 */
 
- /*          Specifies whether or not to order the eigenvalues on the */
 
- /*          diagonal of the Schur form. */
 
- /*          = 'N': Eigenvalues are not ordered; */
 
- /*          = 'S': Eigenvalues are ordered (see SELECT). */
 
- /*  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments */
 
- /*          SELECT must be declared EXTERNAL in the calling subroutine. */
 
- /*          If SORT = 'S', SELECT is used to select eigenvalues to sort */
 
- /*          to the top left of the Schur form. */
 
- /*          If SORT = 'N', SELECT is not referenced. */
 
- /*          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
 
- /*          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex */
 
- /*          conjugate pair of eigenvalues is selected, then both complex */
 
- /*          eigenvalues are selected. */
 
- /*          Note that a selected complex eigenvalue may no longer */
 
- /*          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
 
- /*          ordering may change the value of complex eigenvalues */
 
- /*          (especially if the eigenvalue is ill-conditioned); in this */
 
- /*          case INFO is set to N+2 (see INFO below). */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A. N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the N-by-N matrix A. */
 
- /*          On exit, A has been overwritten by its real Schur form T. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  SDIM    (output) INTEGER */
 
- /*          If SORT = 'N', SDIM = 0. */
 
- /*          If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
 
- /*                         for which SELECT is true. (Complex conjugate */
 
- /*                         pairs for which SELECT is true for either */
 
- /*                         eigenvalue count as 2.) */
 
- /*  WR      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*  WI      (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          WR and WI contain the real and imaginary parts, */
 
- /*          respectively, of the computed eigenvalues in the same order */
 
- /*          that they appear on the diagonal of the output Schur form T. */
 
- /*          Complex conjugate pairs of eigenvalues will appear */
 
- /*          consecutively with the eigenvalue having the positive */
 
- /*          imaginary part first. */
 
- /*  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N) */
 
- /*          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
 
- /*          vectors. */
 
- /*          If JOBVS = 'N', VS is not referenced. */
 
- /*  LDVS    (input) INTEGER */
 
- /*          The leading dimension of the array VS.  LDVS >= 1; if */
 
- /*          JOBVS = 'V', LDVS >= N. */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
 
- /*          On exit, if INFO = 0, WORK(1) contains the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK.  LWORK >= max(1,3*N). */
 
- /*          For good performance, LWORK must generally be larger. */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  BWORK   (workspace) LOGICAL array, dimension (N) */
 
- /*          Not referenced if SORT = 'N'. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0: successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0: if INFO = i, and i is */
 
- /*             <= N: the QR algorithm failed to compute all the */
 
- /*                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
 
- /*                   contain those eigenvalues which have converged; if */
 
- /*                   JOBVS = 'V', VS contains the matrix which reduces A */
 
- /*                   to its partially converged Schur form. */
 
- /*             = N+1: the eigenvalues could not be reordered because some */
 
- /*                   eigenvalues were too close to separate (the problem */
 
- /*                   is very ill-conditioned); */
 
- /*             = N+2: after reordering, roundoff changed values of some */
 
- /*                   complex eigenvalues so that leading eigenvalues in */
 
- /*                   the Schur form no longer satisfy SELECT=.TRUE.  This */
 
- /*                   could also be caused by underflow due to scaling. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input arguments */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --wr;
 
-     --wi;
 
-     vs_dim1 = *ldvs;
 
-     vs_offset = 1 + vs_dim1;
 
-     vs -= vs_offset;
 
-     --work;
 
-     --bwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     lquery = *lwork == -1;
 
-     wantvs = lsame_(jobvs, "V");
 
-     wantst = lsame_(sort, "S");
 
-     if (! wantvs && ! lsame_(jobvs, "N")) {
 
- 	*info = -1;
 
-     } else if (! wantst && ! lsame_(sort, "N")) {
 
- 	*info = -2;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -6;
 
-     } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
 
- 	*info = -11;
 
-     }
 
- /*     Compute workspace */
 
- /*      (Note: Comments in the code beginning "Workspace:" describe the */
 
- /*       minimal amount of workspace needed at that point in the code, */
 
- /*       as well as the preferred amount for good performance. */
 
- /*       NB refers to the optimal block size for the immediately */
 
- /*       following subroutine, as returned by ILAENV. */
 
- /*       HSWORK refers to the workspace preferred by DHSEQR, as */
 
- /*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
 
- /*       the worst case.) */
 
-     if (*info == 0) {
 
- 	if (*n == 0) {
 
- 	    minwrk = 1;
 
- 	    maxwrk = 1;
 
- 	} else {
 
- 	    maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1, 
 
- 		    n, &c__0);
 
- 	    minwrk = *n * 3;
 
- 	    dhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
 
- , &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
 
- 	    hswork = (integer) work[1];
 
- 	    if (! wantvs) {
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *n + hswork;
 
- 		maxwrk = max(i__1,i__2);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, 
 
- 			"DORGHR", " ", n, &c__1, n, &c_n1);
 
- 		maxwrk = max(i__1,i__2);
 
- /* Computing MAX */
 
- 		i__1 = maxwrk, i__2 = *n + hswork;
 
- 		maxwrk = max(i__1,i__2);
 
- 	    }
 
- 	}
 
- 	work[1] = (doublereal) maxwrk;
 
- 	if (*lwork < minwrk && ! lquery) {
 
- 	    *info = -13;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGEES ", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	*sdim = 0;
 
- 	return 0;
 
-     }
 
- /*     Get machine constants */
 
-     eps = dlamch_("P");
 
-     smlnum = dlamch_("S");
 
-     bignum = 1. / smlnum;
 
-     dlabad_(&smlnum, &bignum);
 
-     smlnum = sqrt(smlnum) / eps;
 
-     bignum = 1. / smlnum;
 
- /*     Scale A if max element outside range [SMLNUM,BIGNUM] */
 
-     anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
 
-     scalea = FALSE_;
 
-     if (anrm > 0. && anrm < smlnum) {
 
- 	scalea = TRUE_;
 
- 	cscale = smlnum;
 
-     } else if (anrm > bignum) {
 
- 	scalea = TRUE_;
 
- 	cscale = bignum;
 
-     }
 
-     if (scalea) {
 
- 	dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
 
- 		ierr);
 
-     }
 
- /*     Permute the matrix to make it more nearly triangular */
 
- /*     (Workspace: need N) */
 
-     ibal = 1;
 
-     dgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
 
- /*     Reduce to upper Hessenberg form */
 
- /*     (Workspace: need 3*N, prefer 2*N+N*NB) */
 
-     itau = *n + ibal;
 
-     iwrk = *n + itau;
 
-     i__1 = *lwork - iwrk + 1;
 
-     dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, 
 
- 	     &ierr);
 
-     if (wantvs) {
 
- /*        Copy Householder vectors to VS */
 
- 	dlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
 
- 		;
 
- /*        Generate orthogonal matrix in VS */
 
- /*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
 
- 	i__1 = *lwork - iwrk + 1;
 
- 	dorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk], 
 
- 		 &i__1, &ierr);
 
-     }
 
-     *sdim = 0;
 
- /*     Perform QR iteration, accumulating Schur vectors in VS if desired */
 
- /*     (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
 
-     iwrk = itau;
 
-     i__1 = *lwork - iwrk + 1;
 
-     dhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
 
- 	    vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
 
-     if (ieval > 0) {
 
- 	*info = ieval;
 
-     }
 
- /*     Sort eigenvalues if desired */
 
-     if (wantst && *info == 0) {
 
- 	if (scalea) {
 
- 	    dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
 
- 		    ierr);
 
- 	    dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
 
- 		    ierr);
 
- 	}
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    bwork[i__] = (*select)(&wr[i__], &wi[i__]);
 
- /* L10: */
 
- 	}
 
- /*        Reorder eigenvalues and transform Schur vectors */
 
- /*        (Workspace: none needed) */
 
- 	i__1 = *lwork - iwrk + 1;
 
- 	dtrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], 
 
- 		ldvs, &wr[1], &wi[1], sdim, &s, &sep, &work[iwrk], &i__1, 
 
- 		idum, &c__1, &icond);
 
- 	if (icond > 0) {
 
- 	    *info = *n + icond;
 
- 	}
 
-     }
 
-     if (wantvs) {
 
- /*        Undo balancing */
 
- /*        (Workspace: need N) */
 
- 	dgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs, 
 
- 		 &ierr);
 
-     }
 
-     if (scalea) {
 
- /*        Undo scaling for the Schur form of A */
 
- 	dlascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
 
- 		ierr);
 
- 	i__1 = *lda + 1;
 
- 	dcopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
 
- 	if (cscale == smlnum) {
 
- /*           If scaling back towards underflow, adjust WI if an */
 
- /*           offdiagonal element of a 2-by-2 block in the Schur form */
 
- /*           underflows. */
 
- 	    if (ieval > 0) {
 
- 		i1 = ieval + 1;
 
- 		i2 = ihi - 1;
 
- 		i__1 = ilo - 1;
 
- /* Computing MAX */
 
- 		i__3 = ilo - 1;
 
- 		i__2 = max(i__3,1);
 
- 		dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
 
- 			1], &i__2, &ierr);
 
- 	    } else if (wantst) {
 
- 		i1 = 1;
 
- 		i2 = *n - 1;
 
- 	    } else {
 
- 		i1 = ilo;
 
- 		i2 = ihi - 1;
 
- 	    }
 
- 	    inxt = i1 - 1;
 
- 	    i__1 = i2;
 
- 	    for (i__ = i1; i__ <= i__1; ++i__) {
 
- 		if (i__ < inxt) {
 
- 		    goto L20;
 
- 		}
 
- 		if (wi[i__] == 0.) {
 
- 		    inxt = i__ + 1;
 
- 		} else {
 
- 		    if (a[i__ + 1 + i__ * a_dim1] == 0.) {
 
- 			wi[i__] = 0.;
 
- 			wi[i__ + 1] = 0.;
 
- 		    } else if (a[i__ + 1 + i__ * a_dim1] != 0. && a[i__ + (
 
- 			    i__ + 1) * a_dim1] == 0.) {
 
- 			wi[i__] = 0.;
 
- 			wi[i__ + 1] = 0.;
 
- 			if (i__ > 1) {
 
- 			    i__2 = i__ - 1;
 
- 			    dswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
 
- 				    i__ + 1) * a_dim1 + 1], &c__1);
 
- 			}
 
- 			if (*n > i__ + 1) {
 
- 			    i__2 = *n - i__ - 1;
 
- 			    dswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
 
- 				    a[i__ + 1 + (i__ + 2) * a_dim1], lda);
 
- 			}
 
- 			if (wantvs) {
 
- 			    dswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__ 
 
- 				    + 1) * vs_dim1 + 1], &c__1);
 
- 			}
 
- 			a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ * 
 
- 				a_dim1];
 
- 			a[i__ + 1 + i__ * a_dim1] = 0.;
 
- 		    }
 
- 		    inxt = i__ + 2;
 
- 		}
 
- L20:
 
- 		;
 
- 	    }
 
- 	}
 
- /*        Undo scaling for the imaginary part of the eigenvalues */
 
- 	i__1 = *n - ieval;
 
- /* Computing MAX */
 
- 	i__3 = *n - ieval;
 
- 	i__2 = max(i__3,1);
 
- 	dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval + 
 
- 		1], &i__2, &ierr);
 
-     }
 
-     if (wantst && *info == 0) {
 
- /*        Check if reordering successful */
 
- 	lastsl = TRUE_;
 
- 	lst2sl = TRUE_;
 
- 	*sdim = 0;
 
- 	ip = 0;
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    cursl = (*select)(&wr[i__], &wi[i__]);
 
- 	    if (wi[i__] == 0.) {
 
- 		if (cursl) {
 
- 		    ++(*sdim);
 
- 		}
 
- 		ip = 0;
 
- 		if (cursl && ! lastsl) {
 
- 		    *info = *n + 2;
 
- 		}
 
- 	    } else {
 
- 		if (ip == 1) {
 
- /*                 Last eigenvalue of conjugate pair */
 
- 		    cursl = cursl || lastsl;
 
- 		    lastsl = cursl;
 
- 		    if (cursl) {
 
- 			*sdim += 2;
 
- 		    }
 
- 		    ip = -1;
 
- 		    if (cursl && ! lst2sl) {
 
- 			*info = *n + 2;
 
- 		    }
 
- 		} else {
 
- /*                 First eigenvalue of conjugate pair */
 
- 		    ip = 1;
 
- 		}
 
- 	    }
 
- 	    lst2sl = lastsl;
 
- 	    lastsl = cursl;
 
- /* L30: */
 
- 	}
 
-     }
 
-     work[1] = (doublereal) maxwrk;
 
-     return 0;
 
- /*     End of DGEES */
 
- } /* dgees_ */
 
 
  |