| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403 | 
							- /* dgebal.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dgebal_(char *job, integer *n, doublereal *a, integer *
 
- 	lda, integer *ilo, integer *ihi, doublereal *scale, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     doublereal c__, f, g;
 
-     integer i__, j, k, l, m;
 
-     doublereal r__, s, ca, ra;
 
-     integer ica, ira, iexc;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     doublereal sfmin1, sfmin2, sfmax1, sfmax2;
 
-     extern doublereal dlamch_(char *);
 
-     extern integer idamax_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     logical noconv;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGEBAL balances a general real matrix A.  This involves, first, */
 
- /*  permuting A by a similarity transformation to isolate eigenvalues */
 
- /*  in the first 1 to ILO-1 and last IHI+1 to N elements on the */
 
- /*  diagonal; and second, applying a diagonal similarity transformation */
 
- /*  to rows and columns ILO to IHI to make the rows and columns as */
 
- /*  close in norm as possible.  Both steps are optional. */
 
- /*  Balancing may reduce the 1-norm of the matrix, and improve the */
 
- /*  accuracy of the computed eigenvalues and/or eigenvectors. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOB     (input) CHARACTER*1 */
 
- /*          Specifies the operations to be performed on A: */
 
- /*          = 'N':  none:  simply set ILO = 1, IHI = N, SCALE(I) = 1.0 */
 
- /*                  for i = 1,...,N; */
 
- /*          = 'P':  permute only; */
 
- /*          = 'S':  scale only; */
 
- /*          = 'B':  both permute and scale. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the input matrix A. */
 
- /*          On exit,  A is overwritten by the balanced matrix. */
 
- /*          If JOB = 'N', A is not referenced. */
 
- /*          See Further Details. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A.  LDA >= max(1,N). */
 
- /*  ILO     (output) INTEGER */
 
- /*  IHI     (output) INTEGER */
 
- /*          ILO and IHI are set to integers such that on exit */
 
- /*          A(i,j) = 0 if i > j and j = 1,...,ILO-1 or I = IHI+1,...,N. */
 
- /*          If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
 
- /*  SCALE   (output) DOUBLE PRECISION array, dimension (N) */
 
- /*          Details of the permutations and scaling factors applied to */
 
- /*          A.  If P(j) is the index of the row and column interchanged */
 
- /*          with row and column j and D(j) is the scaling factor */
 
- /*          applied to row and column j, then */
 
- /*          SCALE(j) = P(j)    for j = 1,...,ILO-1 */
 
- /*                   = D(j)    for j = ILO,...,IHI */
 
- /*                   = P(j)    for j = IHI+1,...,N. */
 
- /*          The order in which the interchanges are made is N to IHI+1, */
 
- /*          then 1 to ILO-1. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The permutations consist of row and column interchanges which put */
 
- /*  the matrix in the form */
 
- /*             ( T1   X   Y  ) */
 
- /*     P A P = (  0   B   Z  ) */
 
- /*             (  0   0   T2 ) */
 
- /*  where T1 and T2 are upper triangular matrices whose eigenvalues lie */
 
- /*  along the diagonal.  The column indices ILO and IHI mark the starting */
 
- /*  and ending columns of the submatrix B. Balancing consists of applying */
 
- /*  a diagonal similarity transformation inv(D) * B * D to make the */
 
- /*  1-norms of each row of B and its corresponding column nearly equal. */
 
- /*  The output matrix is */
 
- /*     ( T1     X*D          Y    ) */
 
- /*     (  0  inv(D)*B*D  inv(D)*Z ). */
 
- /*     (  0      0           T2   ) */
 
- /*  Information about the permutations P and the diagonal matrix D is */
 
- /*  returned in the vector SCALE. */
 
- /*  This subroutine is based on the EISPACK routine BALANC. */
 
- /*  Modified by Tzu-Yi Chen, Computer Science Division, University of */
 
- /*    California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     --scale;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") 
 
- 	    && ! lsame_(job, "B")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*lda < max(1,*n)) {
 
- 	*info = -4;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGEBAL", &i__1);
 
- 	return 0;
 
-     }
 
-     k = 1;
 
-     l = *n;
 
-     if (*n == 0) {
 
- 	goto L210;
 
-     }
 
-     if (lsame_(job, "N")) {
 
- 	i__1 = *n;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    scale[i__] = 1.;
 
- /* L10: */
 
- 	}
 
- 	goto L210;
 
-     }
 
-     if (lsame_(job, "S")) {
 
- 	goto L120;
 
-     }
 
- /*     Permutation to isolate eigenvalues if possible */
 
-     goto L50;
 
- /*     Row and column exchange. */
 
- L20:
 
-     scale[m] = (doublereal) j;
 
-     if (j == m) {
 
- 	goto L30;
 
-     }
 
-     dswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
 
-     i__1 = *n - k + 1;
 
-     dswap_(&i__1, &a[j + k * a_dim1], lda, &a[m + k * a_dim1], lda);
 
- L30:
 
-     switch (iexc) {
 
- 	case 1:  goto L40;
 
- 	case 2:  goto L80;
 
-     }
 
- /*     Search for rows isolating an eigenvalue and push them down. */
 
- L40:
 
-     if (l == 1) {
 
- 	goto L210;
 
-     }
 
-     --l;
 
- L50:
 
-     for (j = l; j >= 1; --j) {
 
- 	i__1 = l;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    if (i__ == j) {
 
- 		goto L60;
 
- 	    }
 
- 	    if (a[j + i__ * a_dim1] != 0.) {
 
- 		goto L70;
 
- 	    }
 
- L60:
 
- 	    ;
 
- 	}
 
- 	m = l;
 
- 	iexc = 1;
 
- 	goto L20;
 
- L70:
 
- 	;
 
-     }
 
-     goto L90;
 
- /*     Search for columns isolating an eigenvalue and push them left. */
 
- L80:
 
-     ++k;
 
- L90:
 
-     i__1 = l;
 
-     for (j = k; j <= i__1; ++j) {
 
- 	i__2 = l;
 
- 	for (i__ = k; i__ <= i__2; ++i__) {
 
- 	    if (i__ == j) {
 
- 		goto L100;
 
- 	    }
 
- 	    if (a[i__ + j * a_dim1] != 0.) {
 
- 		goto L110;
 
- 	    }
 
- L100:
 
- 	    ;
 
- 	}
 
- 	m = k;
 
- 	iexc = 2;
 
- 	goto L20;
 
- L110:
 
- 	;
 
-     }
 
- L120:
 
-     i__1 = l;
 
-     for (i__ = k; i__ <= i__1; ++i__) {
 
- 	scale[i__] = 1.;
 
- /* L130: */
 
-     }
 
-     if (lsame_(job, "P")) {
 
- 	goto L210;
 
-     }
 
- /*     Balance the submatrix in rows K to L. */
 
- /*     Iterative loop for norm reduction */
 
-     sfmin1 = dlamch_("S") / dlamch_("P");
 
-     sfmax1 = 1. / sfmin1;
 
-     sfmin2 = sfmin1 * 2.;
 
-     sfmax2 = 1. / sfmin2;
 
- L140:
 
-     noconv = FALSE_;
 
-     i__1 = l;
 
-     for (i__ = k; i__ <= i__1; ++i__) {
 
- 	c__ = 0.;
 
- 	r__ = 0.;
 
- 	i__2 = l;
 
- 	for (j = k; j <= i__2; ++j) {
 
- 	    if (j == i__) {
 
- 		goto L150;
 
- 	    }
 
- 	    c__ += (d__1 = a[j + i__ * a_dim1], abs(d__1));
 
- 	    r__ += (d__1 = a[i__ + j * a_dim1], abs(d__1));
 
- L150:
 
- 	    ;
 
- 	}
 
- 	ica = idamax_(&l, &a[i__ * a_dim1 + 1], &c__1);
 
- 	ca = (d__1 = a[ica + i__ * a_dim1], abs(d__1));
 
- 	i__2 = *n - k + 1;
 
- 	ira = idamax_(&i__2, &a[i__ + k * a_dim1], lda);
 
- 	ra = (d__1 = a[i__ + (ira + k - 1) * a_dim1], abs(d__1));
 
- /*        Guard against zero C or R due to underflow. */
 
- 	if (c__ == 0. || r__ == 0.) {
 
- 	    goto L200;
 
- 	}
 
- 	g = r__ / 2.;
 
- 	f = 1.;
 
- 	s = c__ + r__;
 
- L160:
 
- /* Computing MAX */
 
- 	d__1 = max(f,c__);
 
- /* Computing MIN */
 
- 	d__2 = min(r__,g);
 
- 	if (c__ >= g || max(d__1,ca) >= sfmax2 || min(d__2,ra) <= sfmin2) {
 
- 	    goto L170;
 
- 	}
 
- 	f *= 2.;
 
- 	c__ *= 2.;
 
- 	ca *= 2.;
 
- 	r__ /= 2.;
 
- 	g /= 2.;
 
- 	ra /= 2.;
 
- 	goto L160;
 
- L170:
 
- 	g = c__ / 2.;
 
- L180:
 
- /* Computing MIN */
 
- 	d__1 = min(f,c__), d__1 = min(d__1,g);
 
- 	if (g < r__ || max(r__,ra) >= sfmax2 || min(d__1,ca) <= sfmin2) {
 
- 	    goto L190;
 
- 	}
 
- 	f /= 2.;
 
- 	c__ /= 2.;
 
- 	g /= 2.;
 
- 	ca /= 2.;
 
- 	r__ *= 2.;
 
- 	ra *= 2.;
 
- 	goto L180;
 
- /*        Now balance. */
 
- L190:
 
- 	if (c__ + r__ >= s * .95) {
 
- 	    goto L200;
 
- 	}
 
- 	if (f < 1. && scale[i__] < 1.) {
 
- 	    if (f * scale[i__] <= sfmin1) {
 
- 		goto L200;
 
- 	    }
 
- 	}
 
- 	if (f > 1. && scale[i__] > 1.) {
 
- 	    if (scale[i__] >= sfmax1 / f) {
 
- 		goto L200;
 
- 	    }
 
- 	}
 
- 	g = 1. / f;
 
- 	scale[i__] *= f;
 
- 	noconv = TRUE_;
 
- 	i__2 = *n - k + 1;
 
- 	dscal_(&i__2, &g, &a[i__ + k * a_dim1], lda);
 
- 	dscal_(&l, &f, &a[i__ * a_dim1 + 1], &c__1);
 
- L200:
 
- 	;
 
-     }
 
-     if (noconv) {
 
- 	goto L140;
 
-     }
 
- L210:
 
-     *ilo = k;
 
-     *ihi = l;
 
-     return 0;
 
- /*     End of DGEBAL */
 
- } /* dgebal_ */
 
 
  |