| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 | 
							- /* dtrsm.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag, 
 
- 	integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
 
- 	lda, doublereal *b, integer *ldb)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
 
-     /* Local variables */
 
-     integer i__, j, k, info;
 
-     doublereal temp;
 
-     logical lside;
 
-     extern logical lsame_(char *, char *);
 
-     integer nrowa;
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     logical nounit;
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTRSM  solves one of the matrix equations */
 
- /*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B, */
 
- /*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
 
- /*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of */
 
- /*     op( A ) = A   or   op( A ) = A'. */
 
- /*  The matrix X is overwritten on B. */
 
- /*  Arguments */
 
- /*  ========== */
 
- /*  SIDE   - CHARACTER*1. */
 
- /*           On entry, SIDE specifies whether op( A ) appears on the left */
 
- /*           or right of X as follows: */
 
- /*              SIDE = 'L' or 'l'   op( A )*X = alpha*B. */
 
- /*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B. */
 
- /*           Unchanged on exit. */
 
- /*  UPLO   - CHARACTER*1. */
 
- /*           On entry, UPLO specifies whether the matrix A is an upper or */
 
- /*           lower triangular matrix as follows: */
 
- /*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */
 
- /*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */
 
- /*           Unchanged on exit. */
 
- /*  TRANSA - CHARACTER*1. */
 
- /*           On entry, TRANSA specifies the form of op( A ) to be used in */
 
- /*           the matrix multiplication as follows: */
 
- /*              TRANSA = 'N' or 'n'   op( A ) = A. */
 
- /*              TRANSA = 'T' or 't'   op( A ) = A'. */
 
- /*              TRANSA = 'C' or 'c'   op( A ) = A'. */
 
- /*           Unchanged on exit. */
 
- /*  DIAG   - CHARACTER*1. */
 
- /*           On entry, DIAG specifies whether or not A is unit triangular */
 
- /*           as follows: */
 
- /*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */
 
- /*              DIAG = 'N' or 'n'   A is not assumed to be unit */
 
- /*                                  triangular. */
 
- /*           Unchanged on exit. */
 
- /*  M      - INTEGER. */
 
- /*           On entry, M specifies the number of rows of B. M must be at */
 
- /*           least zero. */
 
- /*           Unchanged on exit. */
 
- /*  N      - INTEGER. */
 
- /*           On entry, N specifies the number of columns of B.  N must be */
 
- /*           at least zero. */
 
- /*           Unchanged on exit. */
 
- /*  ALPHA  - DOUBLE PRECISION. */
 
- /*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is */
 
- /*           zero then  A is not referenced and  B need not be set before */
 
- /*           entry. */
 
- /*           Unchanged on exit. */
 
- /*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m */
 
- /*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. */
 
- /*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k */
 
- /*           upper triangular part of the array  A must contain the upper */
 
- /*           triangular matrix  and the strictly lower triangular part of */
 
- /*           A is not referenced. */
 
- /*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k */
 
- /*           lower triangular part of the array  A must contain the lower */
 
- /*           triangular matrix  and the strictly upper triangular part of */
 
- /*           A is not referenced. */
 
- /*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of */
 
- /*           A  are not referenced either,  but are assumed to be  unity. */
 
- /*           Unchanged on exit. */
 
- /*  LDA    - INTEGER. */
 
- /*           On entry, LDA specifies the first dimension of A as declared */
 
- /*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then */
 
- /*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' */
 
- /*           then LDA must be at least max( 1, n ). */
 
- /*           Unchanged on exit. */
 
- /*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). */
 
- /*           Before entry,  the leading  m by n part of the array  B must */
 
- /*           contain  the  right-hand  side  matrix  B,  and  on exit  is */
 
- /*           overwritten by the solution matrix  X. */
 
- /*  LDB    - INTEGER. */
 
- /*           On entry, LDB specifies the first dimension of B as declared */
 
- /*           in  the  calling  (sub)  program.   LDB  must  be  at  least */
 
- /*           max( 1, m ). */
 
- /*           Unchanged on exit. */
 
- /*  Level 3 Blas routine. */
 
- /*  -- Written on 8-February-1989. */
 
- /*     Jack Dongarra, Argonne National Laboratory. */
 
- /*     Iain Duff, AERE Harwell. */
 
- /*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
 
- /*     Sven Hammarling, Numerical Algorithms Group Ltd. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     lside = lsame_(side, "L");
 
-     if (lside) {
 
- 	nrowa = *m;
 
-     } else {
 
- 	nrowa = *n;
 
-     }
 
-     nounit = lsame_(diag, "N");
 
-     upper = lsame_(uplo, "U");
 
-     info = 0;
 
-     if (! lside && ! lsame_(side, "R")) {
 
- 	info = 1;
 
-     } else if (! upper && ! lsame_(uplo, "L")) {
 
- 	info = 2;
 
-     } else if (! lsame_(transa, "N") && ! lsame_(transa, 
 
- 	     "T") && ! lsame_(transa, "C")) {
 
- 	info = 3;
 
-     } else if (! lsame_(diag, "U") && ! lsame_(diag, 
 
- 	    "N")) {
 
- 	info = 4;
 
-     } else if (*m < 0) {
 
- 	info = 5;
 
-     } else if (*n < 0) {
 
- 	info = 6;
 
-     } else if (*lda < max(1,nrowa)) {
 
- 	info = 9;
 
-     } else if (*ldb < max(1,*m)) {
 
- 	info = 11;
 
-     }
 
-     if (info != 0) {
 
- 	xerbla_("DTRSM ", &info);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible. */
 
-     if (*m == 0 || *n == 0) {
 
- 	return 0;
 
-     }
 
- /*     And when  alpha.eq.zero. */
 
-     if (*alpha == 0.) {
 
- 	i__1 = *n;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    i__2 = *m;
 
- 	    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		b[i__ + j * b_dim1] = 0.;
 
- /* L10: */
 
- 	    }
 
- /* L20: */
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Start the operations. */
 
-     if (lside) {
 
- 	if (lsame_(transa, "N")) {
 
- /*           Form  B := alpha*inv( A )*B. */
 
- 	    if (upper) {
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    if (*alpha != 1.) {
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 
- 				    ;
 
- /* L30: */
 
- 			}
 
- 		    }
 
- 		    for (k = *m; k >= 1; --k) {
 
- 			if (b[k + j * b_dim1] != 0.) {
 
- 			    if (nounit) {
 
- 				b[k + j * b_dim1] /= a[k + k * a_dim1];
 
- 			    }
 
- 			    i__2 = k - 1;
 
- 			    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
 
- 					i__ + k * a_dim1];
 
- /* L40: */
 
- 			    }
 
- 			}
 
- /* L50: */
 
- 		    }
 
- /* L60: */
 
- 		}
 
- 	    } else {
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    if (*alpha != 1.) {
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 
- 				    ;
 
- /* L70: */
 
- 			}
 
- 		    }
 
- 		    i__2 = *m;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			if (b[k + j * b_dim1] != 0.) {
 
- 			    if (nounit) {
 
- 				b[k + j * b_dim1] /= a[k + k * a_dim1];
 
- 			    }
 
- 			    i__3 = *m;
 
- 			    for (i__ = k + 1; i__ <= i__3; ++i__) {
 
- 				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
 
- 					i__ + k * a_dim1];
 
- /* L80: */
 
- 			    }
 
- 			}
 
- /* L90: */
 
- 		    }
 
- /* L100: */
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           Form  B := alpha*inv( A' )*B. */
 
- 	    if (upper) {
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    i__2 = *m;
 
- 		    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			temp = *alpha * b[i__ + j * b_dim1];
 
- 			i__3 = i__ - 1;
 
- 			for (k = 1; k <= i__3; ++k) {
 
- 			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
 
- /* L110: */
 
- 			}
 
- 			if (nounit) {
 
- 			    temp /= a[i__ + i__ * a_dim1];
 
- 			}
 
- 			b[i__ + j * b_dim1] = temp;
 
- /* L120: */
 
- 		    }
 
- /* L130: */
 
- 		}
 
- 	    } else {
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    for (i__ = *m; i__ >= 1; --i__) {
 
- 			temp = *alpha * b[i__ + j * b_dim1];
 
- 			i__2 = *m;
 
- 			for (k = i__ + 1; k <= i__2; ++k) {
 
- 			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
 
- /* L140: */
 
- 			}
 
- 			if (nounit) {
 
- 			    temp /= a[i__ + i__ * a_dim1];
 
- 			}
 
- 			b[i__ + j * b_dim1] = temp;
 
- /* L150: */
 
- 		    }
 
- /* L160: */
 
- 		}
 
- 	    }
 
- 	}
 
-     } else {
 
- 	if (lsame_(transa, "N")) {
 
- /*           Form  B := alpha*B*inv( A ). */
 
- 	    if (upper) {
 
- 		i__1 = *n;
 
- 		for (j = 1; j <= i__1; ++j) {
 
- 		    if (*alpha != 1.) {
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 
- 				    ;
 
- /* L170: */
 
- 			}
 
- 		    }
 
- 		    i__2 = j - 1;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			if (a[k + j * a_dim1] != 0.) {
 
- 			    i__3 = *m;
 
- 			    for (i__ = 1; i__ <= i__3; ++i__) {
 
- 				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
 
- 					i__ + k * b_dim1];
 
- /* L180: */
 
- 			    }
 
- 			}
 
- /* L190: */
 
- 		    }
 
- 		    if (nounit) {
 
- 			temp = 1. / a[j + j * a_dim1];
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
 
- /* L200: */
 
- 			}
 
- 		    }
 
- /* L210: */
 
- 		}
 
- 	    } else {
 
- 		for (j = *n; j >= 1; --j) {
 
- 		    if (*alpha != 1.) {
 
- 			i__1 = *m;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 
- 				    ;
 
- /* L220: */
 
- 			}
 
- 		    }
 
- 		    i__1 = *n;
 
- 		    for (k = j + 1; k <= i__1; ++k) {
 
- 			if (a[k + j * a_dim1] != 0.) {
 
- 			    i__2 = *m;
 
- 			    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
 
- 					i__ + k * b_dim1];
 
- /* L230: */
 
- 			    }
 
- 			}
 
- /* L240: */
 
- 		    }
 
- 		    if (nounit) {
 
- 			temp = 1. / a[j + j * a_dim1];
 
- 			i__1 = *m;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
 
- /* L250: */
 
- 			}
 
- 		    }
 
- /* L260: */
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           Form  B := alpha*B*inv( A' ). */
 
- 	    if (upper) {
 
- 		for (k = *n; k >= 1; --k) {
 
- 		    if (nounit) {
 
- 			temp = 1. / a[k + k * a_dim1];
 
- 			i__1 = *m;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
 
- /* L270: */
 
- 			}
 
- 		    }
 
- 		    i__1 = k - 1;
 
- 		    for (j = 1; j <= i__1; ++j) {
 
- 			if (a[j + k * a_dim1] != 0.) {
 
- 			    temp = a[j + k * a_dim1];
 
- 			    i__2 = *m;
 
- 			    for (i__ = 1; i__ <= i__2; ++i__) {
 
- 				b[i__ + j * b_dim1] -= temp * b[i__ + k * 
 
- 					b_dim1];
 
- /* L280: */
 
- 			    }
 
- 			}
 
- /* L290: */
 
- 		    }
 
- 		    if (*alpha != 1.) {
 
- 			i__1 = *m;
 
- 			for (i__ = 1; i__ <= i__1; ++i__) {
 
- 			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
 
- 				    ;
 
- /* L300: */
 
- 			}
 
- 		    }
 
- /* L310: */
 
- 		}
 
- 	    } else {
 
- 		i__1 = *n;
 
- 		for (k = 1; k <= i__1; ++k) {
 
- 		    if (nounit) {
 
- 			temp = 1. / a[k + k * a_dim1];
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
 
- /* L320: */
 
- 			}
 
- 		    }
 
- 		    i__2 = *n;
 
- 		    for (j = k + 1; j <= i__2; ++j) {
 
- 			if (a[j + k * a_dim1] != 0.) {
 
- 			    temp = a[j + k * a_dim1];
 
- 			    i__3 = *m;
 
- 			    for (i__ = 1; i__ <= i__3; ++i__) {
 
- 				b[i__ + j * b_dim1] -= temp * b[i__ + k * 
 
- 					b_dim1];
 
- /* L330: */
 
- 			    }
 
- 			}
 
- /* L340: */
 
- 		    }
 
- 		    if (*alpha != 1.) {
 
- 			i__2 = *m;
 
- 			for (i__ = 1; i__ <= i__2; ++i__) {
 
- 			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
 
- 				    ;
 
- /* L350: */
 
- 			}
 
- 		    }
 
- /* L360: */
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DTRSM . */
 
- } /* dtrsm_ */
 
 
  |