dw_sparse_cg.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. /*
  2. * StarPU
  3. * Copyright (C) Université Bordeaux 1, CNRS 2008-2010 (see AUTHORS file)
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * Conjugate gradients for Sparse matrices
  18. */
  19. #include "dw_sparse_cg.h"
  20. static struct starpu_task *create_task(starpu_tag_t id)
  21. {
  22. starpu_codelet *cl = calloc(1,sizeof(starpu_codelet));
  23. struct starpu_task *task = starpu_task_create();
  24. task->cl = cl;
  25. task->cl_arg = NULL;
  26. task->use_tag = 1;
  27. task->tag_id = id;
  28. return task;
  29. }
  30. static void create_data(float **_nzvalA, float **_vecb, float **_vecx, uint32_t *_nnz, uint32_t *_nrow, uint32_t **_colind, uint32_t **_rowptr)
  31. {
  32. /* we need a sparse symetric (definite positive ?) matrix and a "dense" vector */
  33. /* example of 3-band matrix */
  34. float *nzval;
  35. uint32_t nnz;
  36. uint32_t *colind;
  37. uint32_t *rowptr;
  38. nnz = 3*size-2;
  39. nzval = malloc(nnz*sizeof(float));
  40. colind = malloc(nnz*sizeof(uint32_t));
  41. rowptr = malloc(size*sizeof(uint32_t));
  42. assert(nzval);
  43. assert(colind);
  44. assert(rowptr);
  45. /* fill the matrix */
  46. unsigned row;
  47. unsigned pos = 0;
  48. for (row = 0; row < size; row++)
  49. {
  50. rowptr[row] = pos;
  51. if (row > 0) {
  52. nzval[pos] = 1.0f;
  53. colind[pos] = row-1;
  54. pos++;
  55. }
  56. nzval[pos] = 5.0f;
  57. colind[pos] = row;
  58. pos++;
  59. if (row < size - 1) {
  60. nzval[pos] = 1.0f;
  61. colind[pos] = row+1;
  62. pos++;
  63. }
  64. }
  65. *_nnz = nnz;
  66. *_nrow = size;
  67. *_nzvalA = nzval;
  68. *_colind = colind;
  69. *_rowptr = rowptr;
  70. STARPU_ASSERT(pos == nnz);
  71. /* initiate the 2 vectors */
  72. float *invec, *outvec;
  73. invec = malloc(size*sizeof(float));
  74. assert(invec);
  75. outvec = malloc(size*sizeof(float));
  76. assert(outvec);
  77. /* fill those */
  78. unsigned ind;
  79. for (ind = 0; ind < size; ind++)
  80. {
  81. invec[ind] = 2.0f;
  82. outvec[ind] = 0.0f;
  83. }
  84. *_vecb = invec;
  85. *_vecx = outvec;
  86. }
  87. void init_problem(void)
  88. {
  89. /* create the sparse input matrix */
  90. float *nzval;
  91. float *vecb;
  92. float *vecx;
  93. uint32_t nnz;
  94. uint32_t nrow;
  95. uint32_t *colind;
  96. uint32_t *rowptr;
  97. create_data(&nzval, &vecb, &vecx, &nnz, &nrow, &colind, &rowptr);
  98. conjugate_gradient(nzval, vecb, vecx, nnz, nrow, colind, rowptr);
  99. }
  100. /*
  101. * cg initialization phase
  102. */
  103. void init_cg(struct cg_problem *problem)
  104. {
  105. problem->i = 0;
  106. /* r = b - A x */
  107. struct starpu_task *task1 = create_task(1UL);
  108. task1->cl->where = STARPU_CPU;
  109. task1->cl->cpu_func = cpu_codelet_func_1;
  110. task1->cl->nbuffers = 4;
  111. task1->buffers[0].handle = problem->ds_matrixA;
  112. task1->buffers[0].mode = STARPU_R;
  113. task1->buffers[1].handle = problem->ds_vecx;
  114. task1->buffers[1].mode = STARPU_R;
  115. task1->buffers[2].handle = problem->ds_vecr;
  116. task1->buffers[2].mode = STARPU_W;
  117. task1->buffers[3].handle = problem->ds_vecb;
  118. task1->buffers[3].mode = STARPU_R;
  119. /* d = r */
  120. struct starpu_task *task2 = create_task(2UL);
  121. task2->cl->where = STARPU_CPU;
  122. task2->cl->cpu_func = cpu_codelet_func_2;
  123. task2->cl->nbuffers = 2;
  124. task2->buffers[0].handle = problem->ds_vecd;
  125. task2->buffers[0].mode = STARPU_W;
  126. task2->buffers[1].handle = problem->ds_vecr;
  127. task2->buffers[1].mode = STARPU_R;
  128. starpu_tag_declare_deps((starpu_tag_t)2UL, 1, (starpu_tag_t)1UL);
  129. /* delta_new = trans(r) r */
  130. struct starpu_task *task3 = create_task(3UL);
  131. task3->cl->where = STARPU_CUDA|STARPU_CPU;
  132. #ifdef STARPU_USE_CUDA
  133. task3->cl->cuda_func = cublas_codelet_func_3;
  134. #endif
  135. task3->cl->cpu_func = cpu_codelet_func_3;
  136. task3->cl_arg = problem;
  137. task3->cl->nbuffers = 1;
  138. task3->buffers[0].handle = problem->ds_vecr;
  139. task3->buffers[0].mode = STARPU_R;
  140. task3->callback_func = iteration_cg;
  141. task3->callback_arg = problem;
  142. /* XXX 3 should only depend on 1 ... */
  143. starpu_tag_declare_deps((starpu_tag_t)3UL, 1, (starpu_tag_t)2UL);
  144. /* launch the computation now */
  145. starpu_task_submit(task1);
  146. starpu_task_submit(task2);
  147. starpu_task_submit(task3);
  148. }
  149. /*
  150. * the inner iteration of the cg algorithm
  151. * the codelet code launcher is its own callback !
  152. */
  153. void launch_new_cg_iteration(struct cg_problem *problem)
  154. {
  155. unsigned iter = problem->i;
  156. unsigned long long maskiter = (iter*1024);
  157. /* q = A d */
  158. struct starpu_task *task4 = create_task(maskiter | 4UL);
  159. task4->cl->where = STARPU_CPU;
  160. task4->cl->cpu_func = cpu_codelet_func_4;
  161. task4->cl->nbuffers = 3;
  162. task4->buffers[0].handle = problem->ds_matrixA;
  163. task4->buffers[0].mode = STARPU_R;
  164. task4->buffers[1].handle = problem->ds_vecd;
  165. task4->buffers[1].mode = STARPU_R;
  166. task4->buffers[2].handle = problem->ds_vecq;
  167. task4->buffers[2].mode = STARPU_W;
  168. /* alpha = delta_new / ( trans(d) q )*/
  169. struct starpu_task *task5 = create_task(maskiter | 5UL);
  170. task5->cl->where = STARPU_CUDA|STARPU_CPU;
  171. #ifdef STARPU_USE_CUDA
  172. task5->cl->cuda_func = cublas_codelet_func_5;
  173. #endif
  174. task5->cl->cpu_func = cpu_codelet_func_5;
  175. task5->cl_arg = problem;
  176. task5->cl->nbuffers = 2;
  177. task5->buffers[0].handle = problem->ds_vecd;
  178. task5->buffers[0].mode = STARPU_R;
  179. task5->buffers[1].handle = problem->ds_vecq;
  180. task5->buffers[1].mode = STARPU_R;
  181. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 5UL), 1, (starpu_tag_t)(maskiter | 4UL));
  182. /* x = x + alpha d */
  183. struct starpu_task *task6 = create_task(maskiter | 6UL);
  184. task6->cl->where = STARPU_CUDA|STARPU_CPU;
  185. #ifdef STARPU_USE_CUDA
  186. task6->cl->cuda_func = cublas_codelet_func_6;
  187. #endif
  188. task6->cl->cpu_func = cpu_codelet_func_6;
  189. task6->cl_arg = problem;
  190. task6->cl->nbuffers = 2;
  191. task6->buffers[0].handle = problem->ds_vecx;
  192. task6->buffers[0].mode = STARPU_RW;
  193. task6->buffers[1].handle = problem->ds_vecd;
  194. task6->buffers[1].mode = STARPU_R;
  195. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 6UL), 1, (starpu_tag_t)(maskiter | 5UL));
  196. /* r = r - alpha q */
  197. struct starpu_task *task7 = create_task(maskiter | 7UL);
  198. task7->cl->where = STARPU_CUDA|STARPU_CPU;
  199. #ifdef STARPU_USE_CUDA
  200. task7->cl->cuda_func = cublas_codelet_func_7;
  201. #endif
  202. task7->cl->cpu_func = cpu_codelet_func_7;
  203. task7->cl_arg = problem;
  204. task7->cl->nbuffers = 2;
  205. task7->buffers[0].handle = problem->ds_vecr;
  206. task7->buffers[0].mode = STARPU_RW;
  207. task7->buffers[1].handle = problem->ds_vecq;
  208. task7->buffers[1].mode = STARPU_R;
  209. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 7UL), 1, (starpu_tag_t)(maskiter | 6UL));
  210. /* update delta_* and compute beta */
  211. struct starpu_task *task8 = create_task(maskiter | 8UL);
  212. task8->cl->where = STARPU_CUDA|STARPU_CPU;
  213. #ifdef STARPU_USE_CUDA
  214. task8->cl->cuda_func = cublas_codelet_func_8;
  215. #endif
  216. task8->cl->cpu_func = cpu_codelet_func_8;
  217. task8->cl_arg = problem;
  218. task8->cl->nbuffers = 1;
  219. task8->buffers[0].handle = problem->ds_vecr;
  220. task8->buffers[0].mode = STARPU_R;
  221. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 8UL), 1, (starpu_tag_t)(maskiter | 7UL));
  222. /* d = r + beta d */
  223. struct starpu_task *task9 = create_task(maskiter | 9UL);
  224. task9->cl->where = STARPU_CUDA|STARPU_CPU;
  225. #ifdef STARPU_USE_CUDA
  226. task9->cl->cuda_func = cublas_codelet_func_9;
  227. #endif
  228. task9->cl->cpu_func = cpu_codelet_func_9;
  229. task9->cl_arg = problem;
  230. task9->cl->nbuffers = 2;
  231. task9->buffers[0].handle = problem->ds_vecd;
  232. task9->buffers[0].mode = STARPU_RW;
  233. task9->buffers[1].handle = problem->ds_vecr;
  234. task9->buffers[1].mode = STARPU_R;
  235. starpu_tag_declare_deps((starpu_tag_t)(maskiter | 9UL), 1, (starpu_tag_t)(maskiter | 8UL));
  236. task9->callback_func = iteration_cg;
  237. task9->callback_arg = problem;
  238. /* launch the computation now */
  239. starpu_task_submit(task4);
  240. starpu_task_submit(task5);
  241. starpu_task_submit(task6);
  242. starpu_task_submit(task7);
  243. starpu_task_submit(task8);
  244. starpu_task_submit(task9);
  245. }
  246. void iteration_cg(void *problem)
  247. {
  248. struct cg_problem *pb = problem;
  249. printf("i : %d (MAX %d)\n\tdelta_new %f (%f)\n", pb->i, MAXITER, pb->delta_new, sqrt(pb->delta_new / pb->size));
  250. if ((pb->i < MAXITER) &&
  251. (pb->delta_new > pb->epsilon) )
  252. {
  253. if (pb->i % 1000 == 0)
  254. printf("i : %d\n\tdelta_new %f (%f)\n", pb->i, pb->delta_new, sqrt(pb->delta_new / pb->size));
  255. pb->i++;
  256. /* we did not reach the stop condition yet */
  257. launch_new_cg_iteration(problem);
  258. }
  259. else {
  260. /* we may stop */
  261. printf("We are done ... after %d iterations \n", pb->i - 1);
  262. printf("i : %d\n\tdelta_new %2.5f\n", pb->i, pb->delta_new);
  263. sem_post(pb->sem);
  264. }
  265. }
  266. /*
  267. * initializing the problem
  268. */
  269. void conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  270. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  271. {
  272. /* first register all the data structures to StarPU */
  273. starpu_data_handle ds_matrixA;
  274. starpu_data_handle ds_vecx, ds_vecb;
  275. starpu_data_handle ds_vecr, ds_vecd, ds_vecq;
  276. /* first the user-allocated data */
  277. starpu_csr_data_register(&ds_matrixA, 0, nnz, nrow,
  278. (uintptr_t)nzvalA, colind, rowptr, 0, sizeof(float));
  279. starpu_vector_data_register(&ds_vecx, 0, (uintptr_t)vecx, nrow, sizeof(float));
  280. starpu_vector_data_register(&ds_vecb, 0, (uintptr_t)vecb, nrow, sizeof(float));
  281. /* then allocate the algorithm intern data */
  282. float *ptr_vecr, *ptr_vecd, *ptr_vecq;
  283. unsigned i;
  284. ptr_vecr = malloc(nrow*sizeof(float));
  285. ptr_vecd = malloc(nrow*sizeof(float));
  286. ptr_vecq = malloc(nrow*sizeof(float));
  287. for (i = 0; i < nrow; i++)
  288. {
  289. ptr_vecr[i] = 0.0f;
  290. ptr_vecd[i] = 0.0f;
  291. ptr_vecq[i] = 0.0f;
  292. }
  293. printf("nrow = %d \n", nrow);
  294. /* and register them as well */
  295. starpu_vector_data_register(&ds_vecr, 0, (uintptr_t)ptr_vecr, nrow, sizeof(float));
  296. starpu_vector_data_register(&ds_vecd, 0, (uintptr_t)ptr_vecd, nrow, sizeof(float));
  297. starpu_vector_data_register(&ds_vecq, 0, (uintptr_t)ptr_vecq, nrow, sizeof(float));
  298. /* we now have the complete problem */
  299. struct cg_problem problem;
  300. problem.ds_matrixA = ds_matrixA;
  301. problem.ds_vecx = ds_vecx;
  302. problem.ds_vecb = ds_vecb;
  303. problem.ds_vecr = ds_vecr;
  304. problem.ds_vecd = ds_vecd;
  305. problem.ds_vecq = ds_vecq;
  306. problem.epsilon = EPSILON;
  307. problem.size = nrow;
  308. problem.delta_old = 1.0;
  309. problem.delta_new = 1.0; /* just to make sure we do at least one iteration */
  310. /* we need a semaphore to synchronize with callbacks */
  311. sem_t sem;
  312. sem_init(&sem, 0, 0U);
  313. problem.sem = &sem;
  314. init_cg(&problem);
  315. sem_wait(&sem);
  316. sem_destroy(&sem);
  317. print_results(vecx, nrow);
  318. }
  319. void do_conjugate_gradient(float *nzvalA, float *vecb, float *vecx, uint32_t nnz,
  320. unsigned nrow, uint32_t *colind, uint32_t *rowptr)
  321. {
  322. /* start the runtime */
  323. starpu_init(NULL);
  324. starpu_helper_cublas_init();
  325. conjugate_gradient(nzvalA, vecb, vecx, nnz, nrow, colind, rowptr);
  326. }