mpi_like_async.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2011 Université de Bordeaux 1
  4. * Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. *
  6. * StarPU is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU Lesser General Public License as published by
  8. * the Free Software Foundation; either version 2.1 of the License, or (at
  9. * your option) any later version.
  10. *
  11. * StarPU is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  14. *
  15. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  16. */
  17. #include <config.h>
  18. #include <starpu.h>
  19. #include <pthread.h>
  20. #include "../helper.h"
  21. #define NTHREADS_DEFAULT 16
  22. #define NITER_DEFAULT 128
  23. static int nthreads = NTHREADS_DEFAULT;
  24. static int niter = NITER_DEFAULT;
  25. //#define DEBUG_MESSAGES 1
  26. //static pthread_cond_t cond;
  27. //static pthread_mutex_t mutex;
  28. struct thread_data
  29. {
  30. unsigned index;
  31. unsigned val;
  32. starpu_data_handle_t handle;
  33. pthread_t thread;
  34. pthread_mutex_t recv_mutex;
  35. unsigned recv_flag; // set when a message is received
  36. unsigned recv_buf;
  37. struct thread_data *neighbour;
  38. };
  39. struct data_req
  40. {
  41. int (*test_func)(void *);
  42. void *test_arg;
  43. struct data_req *next;
  44. };
  45. static pthread_mutex_t data_req_mutex;
  46. static pthread_cond_t data_req_cond;
  47. struct data_req *data_req_list;
  48. unsigned progress_thread_running;
  49. static struct thread_data problem_data[NTHREADS_DEFAULT];
  50. /* We implement some ring transfer, every thread will try to receive a piece of
  51. * data from its neighbour and increment it before transmitting it to its
  52. * successor. */
  53. #ifdef STARPU_USE_CUDA
  54. void cuda_codelet_unsigned_inc(void *descr[], __attribute__ ((unused)) void *cl_arg);
  55. #endif
  56. static void increment_handle_cpu_kernel(void *descr[], void *cl_arg __attribute__((unused)))
  57. {
  58. STARPU_SKIP_IF_VALGRIND;
  59. unsigned *val = (unsigned *)STARPU_VARIABLE_GET_PTR(descr[0]);
  60. *val += 1;
  61. // FPRINTF(stderr, "VAL %d (&val = %p)\n", *val, val);
  62. }
  63. static struct starpu_codelet increment_handle_cl =
  64. {
  65. .modes = { STARPU_RW },
  66. .where = STARPU_CPU|STARPU_CUDA,
  67. .cpu_funcs = {increment_handle_cpu_kernel, NULL},
  68. #ifdef STARPU_USE_CUDA
  69. .cuda_funcs = {cuda_codelet_unsigned_inc, NULL},
  70. #endif
  71. .nbuffers = 1
  72. };
  73. static void increment_handle_async(struct thread_data *thread_data)
  74. {
  75. struct starpu_task *task = starpu_task_create();
  76. task->cl = &increment_handle_cl;
  77. task->handles[0] = thread_data->handle;
  78. task->detach = 1;
  79. task->destroy = 1;
  80. int ret = starpu_task_submit(task);
  81. if (ret == -ENODEV)
  82. exit(STARPU_TEST_SKIPPED);
  83. STARPU_ASSERT(!ret);
  84. }
  85. static int test_recv_handle_async(void *arg)
  86. {
  87. // FPRINTF(stderr, "test_recv_handle_async\n");
  88. int ret;
  89. struct thread_data *thread_data = (struct thread_data *) arg;
  90. _STARPU_PTHREAD_MUTEX_LOCK(&thread_data->recv_mutex);
  91. ret = (thread_data->recv_flag == 1);
  92. if (ret)
  93. {
  94. thread_data->recv_flag = 0;
  95. thread_data->val = thread_data->recv_buf;
  96. }
  97. _STARPU_PTHREAD_MUTEX_UNLOCK(&thread_data->recv_mutex);
  98. if (ret)
  99. {
  100. #ifdef DEBUG_MESSAGES
  101. FPRINTF(stderr, "Thread %d received value %d from thread %d\n",
  102. thread_data->index, thread_data->val, (thread_data->index - 1)%nthreads);
  103. #endif
  104. starpu_data_release(thread_data->handle);
  105. }
  106. return ret;
  107. }
  108. static void recv_handle_async(void *_thread_data)
  109. {
  110. struct thread_data *thread_data = (struct thread_data *) _thread_data;
  111. struct data_req *req = (struct data_req *) malloc(sizeof(struct data_req));
  112. req->test_func = test_recv_handle_async;
  113. req->test_arg = thread_data;
  114. req->next = NULL;
  115. _STARPU_PTHREAD_MUTEX_LOCK(&data_req_mutex);
  116. req->next = data_req_list;
  117. data_req_list = req;
  118. _STARPU_PTHREAD_COND_SIGNAL(&data_req_cond);
  119. _STARPU_PTHREAD_MUTEX_UNLOCK(&data_req_mutex);
  120. }
  121. static int test_send_handle_async(void *arg)
  122. {
  123. int ret;
  124. struct thread_data *thread_data = (struct thread_data *) arg;
  125. struct thread_data *neighbour_data = thread_data->neighbour;
  126. _STARPU_PTHREAD_MUTEX_LOCK(&neighbour_data->recv_mutex);
  127. ret = (neighbour_data->recv_flag == 0);
  128. _STARPU_PTHREAD_MUTEX_UNLOCK(&neighbour_data->recv_mutex);
  129. if (ret)
  130. {
  131. #ifdef DEBUG_MESSAGES
  132. FPRINTF(stderr, "Thread %d sends value %d to thread %d\n", thread_data->index, thread_data->val, neighbour_data->index);
  133. #endif
  134. starpu_data_release(thread_data->handle);
  135. }
  136. return ret;
  137. }
  138. static void send_handle_async(void *_thread_data)
  139. {
  140. struct thread_data *thread_data = (struct thread_data *) _thread_data;
  141. struct thread_data *neighbour_data = thread_data->neighbour;
  142. // FPRINTF(stderr, "send_handle_async\n");
  143. /* send the message */
  144. _STARPU_PTHREAD_MUTEX_LOCK(&neighbour_data->recv_mutex);
  145. neighbour_data->recv_buf = thread_data->val;
  146. neighbour_data->recv_flag = 1;
  147. _STARPU_PTHREAD_MUTEX_UNLOCK(&neighbour_data->recv_mutex);
  148. struct data_req *req = (struct data_req *) malloc(sizeof(struct data_req));
  149. req->test_func = test_send_handle_async;
  150. req->test_arg = thread_data;
  151. req->next = NULL;
  152. _STARPU_PTHREAD_MUTEX_LOCK(&data_req_mutex);
  153. req->next = data_req_list;
  154. data_req_list = req;
  155. _STARPU_PTHREAD_COND_SIGNAL(&data_req_cond);
  156. _STARPU_PTHREAD_MUTEX_UNLOCK(&data_req_mutex);
  157. }
  158. static void *progress_func(void *arg)
  159. {
  160. _STARPU_PTHREAD_MUTEX_LOCK(&data_req_mutex);
  161. progress_thread_running = 1;
  162. _STARPU_PTHREAD_COND_SIGNAL(&data_req_cond);
  163. while (progress_thread_running)
  164. {
  165. struct data_req *req;
  166. if (data_req_list == NULL)
  167. _STARPU_PTHREAD_COND_WAIT(&data_req_cond, &data_req_mutex);
  168. req = data_req_list;
  169. if (req)
  170. {
  171. data_req_list = req->next;
  172. req->next = NULL;
  173. _STARPU_PTHREAD_MUTEX_UNLOCK(&data_req_mutex);
  174. int ret = req->test_func(req->test_arg);
  175. if (ret)
  176. {
  177. free(req);
  178. _STARPU_PTHREAD_MUTEX_LOCK(&data_req_mutex);
  179. }
  180. else
  181. {
  182. /* ret = 0 : the request is not finished, we put it back at the end of the list */
  183. _STARPU_PTHREAD_MUTEX_LOCK(&data_req_mutex);
  184. struct data_req *req_aux = data_req_list;
  185. if (!req_aux)
  186. {
  187. /* The list is empty */
  188. data_req_list = req;
  189. }
  190. else
  191. {
  192. while (req_aux)
  193. {
  194. if (req_aux->next == NULL)
  195. {
  196. req_aux->next = req;
  197. break;
  198. }
  199. req_aux = req_aux->next;
  200. }
  201. }
  202. }
  203. }
  204. }
  205. _STARPU_PTHREAD_MUTEX_UNLOCK(&data_req_mutex);
  206. return NULL;
  207. }
  208. static void *thread_func(void *arg)
  209. {
  210. unsigned iter;
  211. struct thread_data *thread_data = (struct thread_data *) arg;
  212. unsigned index = thread_data->index;
  213. int ret;
  214. starpu_variable_data_register(&thread_data->handle, 0, (uintptr_t)&thread_data->val, sizeof(unsigned));
  215. for (iter = 0; iter < niter; iter++)
  216. {
  217. /* The first thread initiates the first transfer */
  218. if (!((index == 0) && (iter == 0)))
  219. {
  220. starpu_data_acquire_cb(
  221. thread_data->handle, STARPU_W,
  222. recv_handle_async, thread_data
  223. );
  224. }
  225. increment_handle_async(thread_data);
  226. if (!((index == (nthreads - 1)) && (iter == (niter - 1))))
  227. {
  228. starpu_data_acquire_cb(
  229. thread_data->handle, STARPU_R,
  230. send_handle_async, thread_data
  231. );
  232. }
  233. }
  234. ret = starpu_task_wait_for_all();
  235. STARPU_CHECK_RETURN_VALUE(ret, "starpu_task_wait_for_all");
  236. return NULL;
  237. }
  238. int main(int argc, char **argv)
  239. {
  240. int ret;
  241. void *retval;
  242. #ifdef STARPU_SLOW_MACHINE
  243. niter /= 16;
  244. nthreads /= 4;
  245. #endif
  246. ret = starpu_init(NULL);
  247. if (ret == -ENODEV) return STARPU_TEST_SKIPPED;
  248. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  249. /* Create a thread to perform blocking calls */
  250. pthread_t progress_thread;
  251. _STARPU_PTHREAD_MUTEX_INIT(&data_req_mutex, NULL);
  252. _STARPU_PTHREAD_COND_INIT(&data_req_cond, NULL);
  253. data_req_list = NULL;
  254. progress_thread_running = 0;
  255. unsigned t;
  256. for (t = 0; t < nthreads; t++)
  257. {
  258. problem_data[t].index = t;
  259. problem_data[t].val = 0;
  260. _STARPU_PTHREAD_MUTEX_INIT(&problem_data[t].recv_mutex, NULL);
  261. problem_data[t].recv_flag = 0;
  262. problem_data[t].neighbour = &problem_data[(t+1)%nthreads];
  263. }
  264. pthread_create(&progress_thread, NULL, progress_func, NULL);
  265. _STARPU_PTHREAD_MUTEX_LOCK(&data_req_mutex);
  266. while (!progress_thread_running)
  267. _STARPU_PTHREAD_COND_WAIT(&data_req_cond, &data_req_mutex);
  268. _STARPU_PTHREAD_MUTEX_UNLOCK(&data_req_mutex);
  269. for (t = 0; t < nthreads; t++)
  270. {
  271. ret = pthread_create(&problem_data[t].thread, NULL, thread_func, &problem_data[t]);
  272. STARPU_ASSERT(!ret);
  273. }
  274. for (t = 0; t < nthreads; t++)
  275. {
  276. ret = pthread_join(problem_data[t].thread, &retval);
  277. STARPU_ASSERT(!ret);
  278. STARPU_ASSERT(retval == NULL);
  279. }
  280. _STARPU_PTHREAD_MUTEX_LOCK(&data_req_mutex);
  281. progress_thread_running = 0;
  282. _STARPU_PTHREAD_COND_SIGNAL(&data_req_cond);
  283. _STARPU_PTHREAD_MUTEX_UNLOCK(&data_req_mutex);
  284. ret = pthread_join(progress_thread, &retval);
  285. STARPU_ASSERT(!ret);
  286. STARPU_ASSERT(retval == NULL);
  287. /* We check that the value in the "last" thread is valid */
  288. starpu_data_handle_t last_handle = problem_data[nthreads - 1].handle;
  289. starpu_data_acquire(last_handle, STARPU_R);
  290. ret = EXIT_SUCCESS;
  291. if (problem_data[nthreads - 1].val != (nthreads * niter))
  292. {
  293. FPRINTF(stderr, "Final value : %u should be %d\n", problem_data[nthreads - 1].val, (nthreads * niter));
  294. ret = EXIT_FAILURE;
  295. }
  296. starpu_data_release(last_handle);
  297. for (t = 0; t < nthreads; t++)
  298. {
  299. starpu_data_unregister(problem_data[t].handle);
  300. }
  301. starpu_shutdown();
  302. STARPU_RETURN(ret);
  303. }