mpi-support.texi 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2009--2011 Universit@'e de Bordeaux 1
  4. @c Copyright (C) 2010, 2011, 2012 Centre National de la Recherche Scientifique
  5. @c Copyright (C) 2011 Institut National de Recherche en Informatique et Automatique
  6. @c See the file starpu.texi for copying conditions.
  7. The integration of MPI transfers within task parallelism is done in a
  8. very natural way by the means of asynchronous interactions between the
  9. application and StarPU. This is implemented in a separate libstarpumpi library
  10. which basically provides "StarPU" equivalents of @code{MPI_*} functions, where
  11. @code{void *} buffers are replaced with @code{starpu_data_handle_t}s, and all
  12. GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI. The user has to
  13. use the usual @code{mpirun} command of the MPI implementation to start StarPU on
  14. the different MPI nodes.
  15. An MPI Insert Task function provides an even more seamless transition to a
  16. distributed application, by automatically issuing all required data transfers
  17. according to the task graph and an application-provided distribution.
  18. @menu
  19. * The API::
  20. * Simple Example::
  21. * MPI Insert Task Utility::
  22. * MPI Collective Operations::
  23. @end menu
  24. @node The API
  25. @section The API
  26. @subsection Compilation
  27. The flags required to compile or link against the MPI layer are then
  28. accessible with the following commands:
  29. @example
  30. % pkg-config --cflags starpumpi-1.0 # options for the compiler
  31. % pkg-config --libs starpumpi-1.0 # options for the linker
  32. @end example
  33. Also pass the @code{--static} option if the application is to be linked statically.
  34. @subsection Initialisation
  35. @deftypefun int starpu_mpi_initialize (void)
  36. Initializes the starpumpi library. This must be called between calling
  37. @code{starpu_init} and other @code{starpu_mpi} functions. This
  38. function does not call @code{MPI_Init}, it should be called beforehand.
  39. @end deftypefun
  40. @deftypefun int starpu_mpi_initialize_extended (int *@var{rank}, int *@var{world_size})
  41. Initializes the starpumpi library. This must be called between calling
  42. @code{starpu_init} and other @code{starpu_mpi} functions.
  43. This function calls @code{MPI_Init}, and therefore should be prefered
  44. to the previous one for MPI implementations which are not thread-safe.
  45. Returns the current MPI node rank and world size.
  46. @end deftypefun
  47. @deftypefun int starpu_mpi_shutdown (void)
  48. Cleans the starpumpi library. This must be called between calling
  49. @code{starpu_mpi} functions and @code{starpu_shutdown}.
  50. @code{MPI_Finalize} will be called if StarPU-MPI has been initialized
  51. by calling @code{starpu_mpi_initialize_extended}.
  52. @end deftypefun
  53. @subsection Communication
  54. TODO
  55. @deftypefun int starpu_mpi_send (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  56. @end deftypefun
  57. @deftypefun int starpu_mpi_recv (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, MPI_Status *@var{status})
  58. @end deftypefun
  59. @deftypefun int starpu_mpi_isend (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm})
  60. @end deftypefun
  61. @deftypefun int starpu_mpi_irecv (starpu_data_handle_t @var{data_handle}, starpu_mpi_req *@var{req}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm})
  62. @end deftypefun
  63. @deftypefun int starpu_mpi_isend_detached (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  64. @end deftypefun
  65. @deftypefun int starpu_mpi_irecv_detached (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, void (*@var{callback})(void *), void *@var{arg})
  66. @end deftypefun
  67. @deftypefun int starpu_mpi_wait (starpu_mpi_req *@var{req}, MPI_Status *@var{status})
  68. @end deftypefun
  69. @deftypefun int starpu_mpi_test (starpu_mpi_req *@var{req}, int *@var{flag}, MPI_Status *@var{status})
  70. @end deftypefun
  71. @deftypefun int starpu_mpi_barrier (MPI_Comm @var{comm})
  72. @end deftypefun
  73. @deftypefun int starpu_mpi_isend_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{dest}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  74. When the transfer is completed, the tag is unlocked
  75. @end deftypefun
  76. @deftypefun int starpu_mpi_irecv_detached_unlock_tag (starpu_data_handle_t @var{data_handle}, int @var{source}, int @var{mpi_tag}, MPI_Comm @var{comm}, starpu_tag_t @var{tag})
  77. @end deftypefun
  78. @deftypefun int starpu_mpi_isend_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{dest}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  79. Asynchronously send an array of buffers, and unlocks the tag once all
  80. of them are transmitted.
  81. @end deftypefun
  82. @deftypefun int starpu_mpi_irecv_array_detached_unlock_tag (unsigned @var{array_size}, starpu_data_handle_t *@var{data_handle}, int *@var{source}, int *@var{mpi_tag}, MPI_Comm *@var{comm}, starpu_tag_t @var{tag})
  83. @end deftypefun
  84. @page
  85. @node Simple Example
  86. @section Simple Example
  87. @cartouche
  88. @smallexample
  89. void increment_token(void)
  90. @{
  91. struct starpu_task *task = starpu_task_create();
  92. task->cl = &increment_cl;
  93. task->handles[0] = token_handle;
  94. starpu_task_submit(task);
  95. @}
  96. @end smallexample
  97. @end cartouche
  98. @cartouche
  99. @smallexample
  100. int main(int argc, char **argv)
  101. @{
  102. int rank, size;
  103. starpu_init(NULL);
  104. starpu_mpi_initialize_extended(&rank, &size);
  105. starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));
  106. unsigned nloops = NITER;
  107. unsigned loop;
  108. unsigned last_loop = nloops - 1;
  109. unsigned last_rank = size - 1;
  110. @end smallexample
  111. @end cartouche
  112. @cartouche
  113. @smallexample
  114. for (loop = 0; loop < nloops; loop++) @{
  115. int tag = loop*size + rank;
  116. if (loop == 0 && rank == 0)
  117. @{
  118. token = 0;
  119. fprintf(stdout, "Start with token value %d\n", token);
  120. @}
  121. else
  122. @{
  123. starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,
  124. MPI_COMM_WORLD, NULL, NULL);
  125. @}
  126. increment_token();
  127. if (loop == last_loop && rank == last_rank)
  128. @{
  129. starpu_data_acquire(token_handle, STARPU_R);
  130. fprintf(stdout, "Finished: token value %d\n", token);
  131. starpu_data_release(token_handle);
  132. @}
  133. else
  134. @{
  135. starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,
  136. MPI_COMM_WORLD, NULL, NULL);
  137. @}
  138. @}
  139. starpu_task_wait_for_all();
  140. @end smallexample
  141. @end cartouche
  142. @cartouche
  143. @smallexample
  144. starpu_mpi_shutdown();
  145. starpu_shutdown();
  146. if (rank == last_rank)
  147. @{
  148. fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);
  149. STARPU_ASSERT(token == nloops*size);
  150. @}
  151. @end smallexample
  152. @end cartouche
  153. @page
  154. @node MPI Insert Task Utility
  155. @section MPI Insert Task Utility
  156. To save the programmer from having to explicit all communications, StarPU
  157. provides an "MPI Insert Task Utility". The principe is that the application
  158. decides a distribution of the data over the MPI nodes by allocating it and
  159. notifying StarPU of that decision, i.e. tell StarPU which MPI node "owns" which
  160. data. All MPI nodes then process the whole task graph, and StarPU automatically
  161. determines which node actually execute which task, as well as the required MPI
  162. transfers.
  163. @deftypefun int starpu_data_set_tag (starpu_data_handle_t @var{handle}, int @var{tag})
  164. Tell StarPU-MPI which MPI tag to use when exchanging the data.
  165. @end deftypefun
  166. @deftypefun int starpu_data_get_tag (starpu_data_handle_t @var{handle})
  167. Returns the MPI tag to be used when exchanging the data.
  168. @end deftypefun
  169. @deftypefun int starpu_data_set_rank (starpu_data_handle_t @var{handle}, int @var{rank})
  170. Tell StarPU-MPI which MPI node "owns" a given data, that is, the node which will
  171. always keep an up-to-date value, and will by default execute tasks which write
  172. to it.
  173. @end deftypefun
  174. @deftypefun int starpu_data_get_rank (starpu_data_handle_t @var{handle})
  175. Returns the last value set by @code{starpu_data_set_rank}.
  176. @end deftypefun
  177. @defmac STARPU_EXECUTE_ON_NODE
  178. this macro is used when calling @code{starpu_mpi_insert_task}, and
  179. must be followed by a integer value which specified the node on which
  180. to execute the codelet.
  181. @end defmac
  182. @defmac STARPU_EXECUTE_ON_DATA
  183. this macro is used when calling @code{starpu_mpi_insert_task}, and
  184. must be followed by a data handle to specify that the node owning the
  185. given data will execute the codelet.
  186. @end defmac
  187. @deftypefun int starpu_mpi_insert_task (MPI_Comm @var{comm}, struct starpu_codelet *@var{codelet}, ...)
  188. Create and submit a task corresponding to @var{codelet} with the following
  189. arguments. The argument list must be zero-terminated.
  190. The arguments following the codelets are the same types as for the
  191. function @code{starpu_insert_task} defined in @ref{Insert Task
  192. Utility}. The extra argument @code{STARPU_EXECUTE_ON_NODE} followed by an
  193. integer allows to specify the MPI node to execute the codelet. It is also
  194. possible to specify that the node owning a specific data will execute
  195. the codelet, by using @code{STARPU_EXECUTE_ON_DATA} followed by a data
  196. handle.
  197. The internal algorithm is as follows:
  198. @enumerate
  199. @item Find out whether we (as an MPI node) are to execute the codelet
  200. because we own the data to be written to. If different nodes own data
  201. to be written to, the argument @code{STARPU_EXECUTE_ON_NODE} or
  202. @code{STARPU_EXECUTE_ON_DATA} has to be used to specify which MPI node will
  203. execute the task.
  204. @item Send and receive data as requested. Nodes owning data which need to be
  205. read by the task are sending them to the MPI node which will execute it. The
  206. latter receives them.
  207. @item Execute the codelet. This is done by the MPI node selected in the
  208. 1st step of the algorithm.
  209. @item In the case when different MPI nodes own data to be written to, send
  210. written data back to their owners.
  211. @end enumerate
  212. The algorithm also includes a cache mechanism that allows not to send
  213. data twice to the same MPI node, unless the data has been modified.
  214. @end deftypefun
  215. @deftypefun void starpu_mpi_get_data_on_node (MPI_Comm @var{comm}, starpu_data_handle_t @var{data_handle}, int @var{node})
  216. Transfer data @var{data_handle} to MPI node @var{node}, sending it from its
  217. owner if needed. At least the target node and the owner have to call the
  218. function.
  219. @end deftypefun
  220. Here an stencil example showing how to use @code{starpu_mpi_insert_task}. One
  221. first needs to define a distribution function which specifies the
  222. locality of the data. Note that that distribution information needs to
  223. be given to StarPU by calling @code{starpu_data_set_rank}.
  224. @cartouche
  225. @smallexample
  226. /* Returns the MPI node number where data is */
  227. int my_distrib(int x, int y, int nb_nodes) @{
  228. /* Block distrib */
  229. return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;
  230. // /* Other examples useful for other kinds of computations */
  231. // /* / distrib */
  232. // return (x+y) % nb_nodes;
  233. // /* Block cyclic distrib */
  234. // unsigned side = sqrt(nb_nodes);
  235. // return x % side + (y % side) * size;
  236. @}
  237. @end smallexample
  238. @end cartouche
  239. Now the data can be registered within StarPU. Data which are not
  240. owned but will be needed for computations can be registered through
  241. the lazy allocation mechanism, i.e. with a @code{home_node} set to -1.
  242. StarPU will automatically allocate the memory when it is used for the
  243. first time.
  244. One can note an optimization here (the @code{else if} test): we only register
  245. data which will be needed by the tasks that we will execute.
  246. @cartouche
  247. @smallexample
  248. unsigned matrix[X][Y];
  249. starpu_data_handle_t data_handles[X][Y];
  250. for(x = 0; x < X; x++) @{
  251. for (y = 0; y < Y; y++) @{
  252. int mpi_rank = my_distrib(x, y, size);
  253. if (mpi_rank == my_rank)
  254. /* Owning data */
  255. starpu_variable_data_register(&data_handles[x][y], 0,
  256. (uintptr_t)&(matrix[x][y]), sizeof(unsigned));
  257. else if (my_rank == my_distrib(x+1, y, size) || my_rank == my_distrib(x-1, y, size)
  258. || my_rank == my_distrib(x, y+1, size) || my_rank == my_distrib(x, y-1, size))
  259. /* I don't own that index, but will need it for my computations */
  260. starpu_variable_data_register(&data_handles[x][y], -1,
  261. (uintptr_t)NULL, sizeof(unsigned));
  262. else
  263. /* I know it's useless to allocate anything for this */
  264. data_handles[x][y] = NULL;
  265. if (data_handles[x][y])
  266. starpu_data_set_rank(data_handles[x][y], mpi_rank);
  267. @}
  268. @}
  269. @end smallexample
  270. @end cartouche
  271. Now @code{starpu_mpi_insert_task()} can be called for the different
  272. steps of the application.
  273. @cartouche
  274. @smallexample
  275. for(loop=0 ; loop<niter; loop++)
  276. for (x = 1; x < X-1; x++)
  277. for (y = 1; y < Y-1; y++)
  278. starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,
  279. STARPU_RW, data_handles[x][y],
  280. STARPU_R, data_handles[x-1][y],
  281. STARPU_R, data_handles[x+1][y],
  282. STARPU_R, data_handles[x][y-1],
  283. STARPU_R, data_handles[x][y+1],
  284. 0);
  285. starpu_task_wait_for_all();
  286. @end smallexample
  287. @end cartouche
  288. I.e. all MPI nodes process the whole task graph, but as mentioned above, for
  289. each task, only the MPI node which owns the data being written to (here,
  290. @code{data_handles[x][y]}) will actually run the task. The other MPI nodes will
  291. automatically send the required data.
  292. @node MPI Collective Operations
  293. @section MPI Collective Operations
  294. @deftypefun int starpu_mpi_scatter_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  295. Scatter data among processes of the communicator based on the ownership of
  296. the data. For each data of the array @var{data_handles}, the
  297. process @var{root} sends the data to the process owning this data.
  298. Processes receiving data must have valid data handles to receive them.
  299. @end deftypefun
  300. @deftypefun int starpu_mpi_gather_detached (starpu_data_handle_t *@var{data_handles}, int @var{count}, int @var{root}, MPI_Comm @var{comm})
  301. Gather data from the different processes of the communicator onto the
  302. process @var{root}. Each process owning data handle in the array
  303. @var{data_handles} will send them to the process @var{root}. The
  304. process @var{root} must have valid data handles to receive the data.
  305. @end deftypefun
  306. @page
  307. @cartouche
  308. @smallexample
  309. if (rank == root)
  310. @{
  311. /* Allocate the vector */
  312. vector = malloc(nblocks * sizeof(float *));
  313. for(x=0 ; x<nblocks ; x++)
  314. @{
  315. starpu_malloc((void **)&vector[x], block_size*sizeof(float));
  316. @}
  317. @}
  318. /* Allocate data handles and register data to StarPU */
  319. data_handles = malloc(nblocks*sizeof(starpu_data_handle_t *));
  320. for(x = 0; x < nblocks ; x++)
  321. @{
  322. int mpi_rank = my_distrib(x, nodes);
  323. if (rank == root) @{
  324. starpu_vector_data_register(&data_handles[x], 0, (uintptr_t)vector[x],
  325. blocks_size, sizeof(float));
  326. @}
  327. else if ((mpi_rank == rank) || ((rank == mpi_rank+1 || rank == mpi_rank-1))) @{
  328. /* I own that index, or i will need it for my computations */
  329. starpu_vector_data_register(&data_handles[x], -1, (uintptr_t)NULL,
  330. block_size, sizeof(float));
  331. @}
  332. else @{
  333. /* I know it's useless to allocate anything for this */
  334. data_handles[x] = NULL;
  335. @}
  336. if (data_handles[x]) @{
  337. starpu_data_set_rank(data_handles[x], mpi_rank);
  338. @}
  339. @}
  340. /* Scatter the matrix among the nodes */
  341. starpu_mpi_scatter_detached(data_handles, nblocks, root, MPI_COMM_WORLD);
  342. /* Calculation */
  343. for(x = 0; x < nblocks ; x++) @{
  344. if (data_handles[x]) @{
  345. int owner = starpu_data_get_rank(data_handles[x]);
  346. if (owner == rank) @{
  347. starpu_insert_task(&cl, STARPU_RW, data_handles[x], 0);
  348. @}
  349. @}
  350. @}
  351. /* Gather the matrix on main node */
  352. starpu_mpi_gather_detached(data_handles, nblocks, 0, MPI_COMM_WORLD);
  353. @end smallexample
  354. @end cartouche