c-extensions.texi 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. @c -*-texinfo-*-
  2. @c This file is part of the StarPU Handbook.
  3. @c Copyright (C) 2011, 2012 Institut National de Recherche en Informatique et Automatique
  4. @c See the file starpu.texi for copying conditions.
  5. @cindex C extensions
  6. @cindex GCC plug-in
  7. When GCC plug-in support is available, StarPU builds a plug-in for the
  8. GNU Compiler Collection (GCC), which defines extensions to languages of
  9. the C family (C, C++, Objective-C) that make it easier to write StarPU
  10. code@footnote{This feature is only available for GCC 4.5 and later. It
  11. can be disabled by configuring with @code{--disable-gcc-extensions}.}.
  12. Those extensions include syntactic sugar for defining
  13. tasks and their implementations, invoking a task, and manipulating data
  14. buffers. Use of these extensions can be made conditional on the
  15. availability of the plug-in, leading to valid C sequential code when the
  16. plug-in is not used (@pxref{Conditional Extensions}).
  17. When StarPU has been installed with its GCC plug-in, programs that use
  18. these extensions can be compiled this way:
  19. @example
  20. $ gcc -c -fplugin=`pkg-config starpu-1.0 --variable=gccplugin` foo.c
  21. @end example
  22. @noindent
  23. When the plug-in is not available, the above @command{pkg-config}
  24. command returns the empty string.
  25. In addition, the @code{-fplugin-arg-starpu-verbose} flag can be used to
  26. obtain feedback from the compiler as it analyzes the C extensions used
  27. in source files.
  28. This section describes the C extensions implemented by StarPU's GCC
  29. plug-in. It does not require detailed knowledge of the StarPU library.
  30. Note: as of StarPU @value{VERSION}, this is still an area under
  31. development and subject to change.
  32. @menu
  33. * Defining Tasks:: Defining StarPU tasks
  34. * Synchronization and Other Pragmas:: Synchronization, and more.
  35. * Registered Data Buffers:: Manipulating data buffers
  36. * Conditional Extensions:: Using C extensions only when available
  37. @end menu
  38. @node Defining Tasks
  39. @section Defining Tasks
  40. @cindex task
  41. @cindex task implementation
  42. The StarPU GCC plug-in views @dfn{tasks} as ``extended'' C functions:
  43. @enumerate
  44. @item
  45. tasks may have several implementations---e.g., one for CPUs, one written
  46. in OpenCL, one written in CUDA;
  47. @item
  48. tasks may have several implementations of the same target---e.g.,
  49. several CPU implementations;
  50. @item
  51. when a task is invoked, it may run in parallel, and StarPU is free to
  52. choose any of its implementations.
  53. @end enumerate
  54. Tasks and their implementations must be @emph{declared}. These
  55. declarations are annotated with @dfn{attributes} (@pxref{Attribute
  56. Syntax, attributes in GNU C,, gcc, Using the GNU Compiler Collection
  57. (GCC)}): the declaration of a task is a regular C function declaration
  58. with an additional @code{task} attribute, and task implementations are
  59. declared with a @code{task_implementation} attribute.
  60. The following function attributes are provided:
  61. @table @code
  62. @item task
  63. @cindex @code{task} attribute
  64. Declare the given function as a StarPU task. Its return type must be
  65. @code{void}, and it must not be defined---instead, a definition will
  66. automatically be provided by the compiler.
  67. Under the hood, declaring a task leads to the declaration of the
  68. corresponding @code{codelet} (@pxref{Codelet and Tasks}). If one or
  69. more task implementations are declared in the same compilation unit,
  70. then the codelet and the function itself are also defined; they inherit
  71. the scope of the task.
  72. Scalar arguments to the task are passed by value and copied to the
  73. target device if need be---technically, they are passed as the
  74. @code{cl_arg} buffer (@pxref{Codelets and Tasks, @code{cl_arg}}).
  75. @cindex @code{output} type attribute
  76. Pointer arguments are assumed to be registered data buffers---the
  77. @code{buffers} argument of a task (@pxref{Codelets and Tasks,
  78. @code{buffers}}); @code{const}-qualified pointer arguments are viewed as
  79. read-only buffers (@code{STARPU_R}), and non-@code{const}-qualified
  80. buffers are assumed to be used read-write (@code{STARPU_RW}). In
  81. addition, the @code{output} type attribute can be as a type qualifier
  82. for output pointer or array parameters (@code{STARPU_W}).
  83. @item task_implementation (@var{target}, @var{task})
  84. @cindex @code{task_implementation} attribute
  85. Declare the given function as an implementation of @var{task} to run on
  86. @var{target}. @var{target} must be a string, currently one of
  87. @code{"cpu"}, @code{"opencl"}, or @code{"cuda"}.
  88. @c FIXME: Update when OpenCL support is ready.
  89. @end table
  90. Here is an example:
  91. @cartouche
  92. @smallexample
  93. #define __output __attribute__ ((output))
  94. static void matmul (const float *A, const float *B,
  95. __output float *C,
  96. unsigned nx, unsigned ny, unsigned nz)
  97. __attribute__ ((task));
  98. static void matmul_cpu (const float *A, const float *B,
  99. __output float *C,
  100. unsigned nx, unsigned ny, unsigned nz)
  101. __attribute__ ((task_implementation ("cpu", matmul)));
  102. static void
  103. matmul_cpu (const float *A, const float *B, __output float *C,
  104. unsigned nx, unsigned ny, unsigned nz)
  105. @{
  106. unsigned i, j, k;
  107. for (j = 0; j < ny; j++)
  108. for (i = 0; i < nx; i++)
  109. @{
  110. for (k = 0; k < nz; k++)
  111. C[j * nx + i] += A[j * nz + k] * B[k * nx + i];
  112. @}
  113. @}
  114. @end smallexample
  115. @end cartouche
  116. @noindent
  117. A @code{matmult} task is defined; it has only one implementation,
  118. @code{matmult_cpu}, which runs on the CPU. Variables @var{A} and
  119. @var{B} are input buffers, whereas @var{C} is considered an input/output
  120. buffer.
  121. CUDA and OpenCL implementations can be declared in a similar way:
  122. @cartouche
  123. @smallexample
  124. static void matmul_cuda (const float *A, const float *B, float *C,
  125. unsigned nx, unsigned ny, unsigned nz)
  126. __attribute__ ((task_implementation ("cuda", matmul)));
  127. static void matmul_opencl (const float *A, const float *B, float *C,
  128. unsigned nx, unsigned ny, unsigned nz)
  129. __attribute__ ((task_implementation ("opencl", matmul)));
  130. @end smallexample
  131. @end cartouche
  132. @noindent
  133. The CUDA and OpenCL implementations typically either invoke a kernel
  134. written in CUDA or OpenCL (for similar code, @pxref{CUDA Kernel}, and
  135. @pxref{OpenCL Kernel}), or call a library function that uses CUDA or
  136. OpenCL under the hood, such as CUBLAS functions:
  137. @cartouche
  138. @smallexample
  139. static void
  140. matmul_cuda (const float *A, const float *B, float *C,
  141. unsigned nx, unsigned ny, unsigned nz)
  142. @{
  143. cublasSgemm ('n', 'n', nx, ny, nz,
  144. 1.0f, A, 0, B, 0,
  145. 0.0f, C, 0);
  146. cudaStreamSynchronize (starpu_cuda_get_local_stream ());
  147. @}
  148. @end smallexample
  149. @end cartouche
  150. A task can be invoked like a regular C function:
  151. @cartouche
  152. @smallexample
  153. matmul (&A[i * zdim * bydim + k * bzdim * bydim],
  154. &B[k * xdim * bzdim + j * bxdim * bzdim],
  155. &C[i * xdim * bydim + j * bxdim * bydim],
  156. bxdim, bydim, bzdim);
  157. @end smallexample
  158. @end cartouche
  159. @noindent
  160. This leads to an @dfn{asynchronous invocation}, whereby @code{matmult}'s
  161. implementation may run in parallel with the continuation of the caller.
  162. The next section describes how memory buffers must be handled in
  163. StarPU-GCC code. For a complete example, see the
  164. @code{gcc-plugin/examples} directory of the source distribution, and
  165. @ref{Vector Scaling Using the C Extension, the vector-scaling
  166. example}.
  167. @node Synchronization and Other Pragmas
  168. @section Initialization, Termination, and Synchronization
  169. The following pragmas allow user code to control StarPU's life time and
  170. to synchronize with tasks.
  171. @table @code
  172. @item #pragma starpu initialize
  173. Initialize StarPU. This call is compulsory and is @emph{never} added
  174. implicitly. One of the reasons this has to be done explicitly is that
  175. it provides greater control to user code over its resource usage.
  176. @item #pragma starpu shutdown
  177. Shut down StarPU, giving it an opportunity to write profiling info to a
  178. file on disk, for instance (@pxref{Off-line, off-line performance
  179. feedback}).
  180. @item #pragma starpu wait
  181. Wait for all task invocations to complete, as with
  182. @code{starpu_wait_for_all} (@pxref{Codelets and Tasks,
  183. starpu_wait_for_all}).
  184. @end table
  185. @node Registered Data Buffers
  186. @section Registered Data Buffers
  187. Data buffers such as matrices and vectors that are to be passed to tasks
  188. must be @dfn{registered}. Registration allows StarPU to handle data
  189. transfers among devices---e.g., transferring an input buffer from the
  190. CPU's main memory to a task scheduled to run a GPU (@pxref{StarPU Data
  191. Management Library}).
  192. The following pragmas are provided:
  193. @table @code
  194. @item #pragma starpu register @var{ptr} [@var{size}]
  195. Register @var{ptr} as a @var{size}-element buffer. When @var{ptr} has
  196. an array type whose size is known, @var{size} may be omitted.
  197. @item #pragma starpu unregister @var{ptr}
  198. Unregister the previously-registered memory area pointed to by
  199. @var{ptr}. As a side-effect, @var{ptr} points to a valid copy in main
  200. memory.
  201. @item #pragma starpu acquire @var{ptr}
  202. Acquire in main memory an up-to-date copy of the previously-registered
  203. memory area pointed to by @var{ptr}, for read-write access.
  204. @item #pragma starpu release @var{ptr}
  205. Release the previously-register memory area pointed to by @var{ptr},
  206. making it available to the tasks.
  207. @end table
  208. Additionally, the @code{heap_allocated} variable attribute offers a
  209. simple way to allocate storage for arrays on the heap:
  210. @table @code
  211. @item heap_allocated
  212. @cindex @code{heap_allocated} attribute
  213. This attributes applies to local variables with an array type. Its
  214. effect is to automatically allocate the array's storage on
  215. the heap, using @code{starpu_malloc} under the hood (@pxref{Basic Data
  216. Library API, starpu_malloc}). The heap-allocated array is automatically
  217. freed when the variable's scope is left, as with
  218. automatic variables.
  219. @end table
  220. @noindent
  221. The following example illustrates use of the @code{heap_allocated}
  222. attribute:
  223. @example
  224. extern void cholesky(unsigned nblocks, unsigned size,
  225. float mat[nblocks][nblocks][size])
  226. __attribute__ ((task));
  227. int
  228. main (int argc, char *argv[])
  229. @{
  230. #pragma starpu initialize
  231. /* ... */
  232. int nblocks, size;
  233. parse_args (&nblocks, &size);
  234. /* Allocate an array of the required size on the heap,
  235. and register it. */
  236. @{
  237. float matrix[nblocks][nblocks][size]
  238. __attribute__ ((heap_allocated));
  239. #pragma starpu register matrix
  240. cholesky (nblocks, size, matrix);
  241. #pragma starpu wait
  242. #pragma starpu unregister matrix
  243. @} /* MATRIX is automatically freed here. */
  244. #pragma starpu shutdown
  245. return EXIT_SUCCESS;
  246. @}
  247. @end example
  248. @node Conditional Extensions
  249. @section Using C Extensions Conditionally
  250. The C extensions described in this chapter are only available when GCC
  251. and its StarPU plug-in are in use. Yet, it is possible to make use of
  252. these extensions when they are available---leading to hybrid CPU/GPU
  253. code---and discard them when they are not available---leading to valid
  254. sequential code.
  255. To that end, the GCC plug-in defines a C preprocessor macro when it is
  256. being used:
  257. @defmac STARPU_GCC_PLUGIN
  258. Defined for code being compiled with the StarPU GCC plug-in. When
  259. defined, this macro expands to an integer denoting the version of the
  260. supported C extensions.
  261. @end defmac
  262. The code below illustrates how to define a task and its implementations
  263. in a way that allows it to be compiled without the GCC plug-in:
  264. @smallexample
  265. /* The macros below abstract over the attributes specific to
  266. StarPU-GCC and the name of the CPU implementation. */
  267. #ifdef STARPU_GCC_PLUGIN
  268. # define __task __attribute__ ((task))
  269. # define CPU_TASK_IMPL(task) task ## _cpu
  270. #else
  271. # define __task
  272. # define CPU_TASK_IMPL(task) task
  273. #endif
  274. #include <stdlib.h>
  275. static void matmul (const float *A, const float *B, float *C,
  276. unsigned nx, unsigned ny, unsigned nz) __task;
  277. #ifdef STARPU_GCC_PLUGIN
  278. static void matmul_cpu (const float *A, const float *B, float *C,
  279. unsigned nx, unsigned ny, unsigned nz)
  280. __attribute__ ((task_implementation ("cpu", matmul)));
  281. #endif
  282. static void
  283. CPU_TASK_IMPL (matmul) (const float *A, const float *B, float *C,
  284. unsigned nx, unsigned ny, unsigned nz)
  285. @{
  286. /* Code of the CPU kernel here... */
  287. @}
  288. int
  289. main (int argc, char *argv[])
  290. @{
  291. /* The pragmas below are simply ignored when StarPU-GCC
  292. is not used. */
  293. #pragma starpu initialize
  294. float A[123][42][7], B[123][42][7], C[123][42][7];
  295. #pragma starpu register A
  296. #pragma starpu register B
  297. #pragma starpu register C
  298. /* When StarPU-GCC is used, the call below is asynchronous;
  299. otherwise, it is synchronous. */
  300. matmul (A, B, C, 123, 42, 7);
  301. #pragma starpu wait
  302. #pragma starpu shutdown
  303. return EXIT_SUCCESS;
  304. @}
  305. @end smallexample
  306. Note that attributes such as @code{task} are simply ignored by GCC when
  307. the StarPU plug-in is not loaded, so the @code{__task} macro could be
  308. omitted altogether. However, @command{gcc -Wall} emits a warning for
  309. unknown attributes, which can be inconvenient, and other compilers may
  310. be unable to parse the attribute syntax. Thus, using macros such as
  311. @code{__task} above is recommended.
  312. @c Local Variables:
  313. @c TeX-master: "../starpu.texi"
  314. @c ispell-local-dictionary: "american"
  315. @c End: