| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 | /* dtrtri.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static integer c_n1 = -1;static integer c__2 = 2;static doublereal c_b18 = 1.;static doublereal c_b22 = -1.;/* Subroutine */ int dtrtri_(char *uplo, char *diag, integer *n, doublereal *	a, integer *lda, integer *info){    /* System generated locals */    address a__1[2];    integer a_dim1, a_offset, i__1, i__2[2], i__3, i__4, i__5;    char ch__1[2];    /* Builtin functions */    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);    /* Local variables */    integer j, jb, nb, nn;    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *), dtrsm_(	    char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *);    logical upper;    extern /* Subroutine */ int dtrti2_(char *, char *, integer *, doublereal 	    *, integer *, integer *), xerbla_(char *, integer 	    *);    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 	    integer *, integer *);    logical nounit;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTRTRI computes the inverse of a real upper or lower triangular *//*  matrix A. *//*  This is the Level 3 BLAS version of the algorithm. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  A is upper triangular; *//*          = 'L':  A is lower triangular. *//*  DIAG    (input) CHARACTER*1 *//*          = 'N':  A is non-unit triangular; *//*          = 'U':  A is unit triangular. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the triangular matrix A.  If UPLO = 'U', the *//*          leading N-by-N upper triangular part of the array A contains *//*          the upper triangular matrix, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading N-by-N lower triangular part of the array A contains *//*          the lower triangular matrix, and the strictly upper *//*          triangular part of A is not referenced.  If DIAG = 'U', the *//*          diagonal elements of A are also not referenced and are *//*          assumed to be 1. *//*          On exit, the (triangular) inverse of the original matrix, in *//*          the same storage format. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0: successful exit *//*          < 0: if INFO = -i, the i-th argument had an illegal value *//*          > 0: if INFO = i, A(i,i) is exactly zero.  The triangular *//*               matrix is singular and its inverse can not be computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    nounit = lsame_(diag, "N");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (! nounit && ! lsame_(diag, "U")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTRTRI", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Check for singularity if non-unit. */    if (nounit) {	i__1 = *n;	for (*info = 1; *info <= i__1; ++(*info)) {	    if (a[*info + *info * a_dim1] == 0.) {		return 0;	    }/* L10: */	}	*info = 0;    }/*     Determine the block size for this environment. *//* Writing concatenation */    i__2[0] = 1, a__1[0] = uplo;    i__2[1] = 1, a__1[1] = diag;    s_cat(ch__1, a__1, i__2, &c__2, (ftnlen)2);    nb = ilaenv_(&c__1, "DTRTRI", ch__1, n, &c_n1, &c_n1, &c_n1);    if (nb <= 1 || nb >= *n) {/*        Use unblocked code */	dtrti2_(uplo, diag, n, &a[a_offset], lda, info);    } else {/*        Use blocked code */	if (upper) {/*           Compute inverse of upper triangular matrix */	    i__1 = *n;	    i__3 = nb;	    for (j = 1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {/* Computing MIN */		i__4 = nb, i__5 = *n - j + 1;		jb = min(i__4,i__5);/*              Compute rows 1:j-1 of current block column */		i__4 = j - 1;		dtrmm_("Left", "Upper", "No transpose", diag, &i__4, &jb, &			c_b18, &a[a_offset], lda, &a[j * a_dim1 + 1], lda);		i__4 = j - 1;		dtrsm_("Right", "Upper", "No transpose", diag, &i__4, &jb, &			c_b22, &a[j + j * a_dim1], lda, &a[j * a_dim1 + 1], 			lda);/*              Compute inverse of current diagonal block */		dtrti2_("Upper", diag, &jb, &a[j + j * a_dim1], lda, info);/* L20: */	    }	} else {/*           Compute inverse of lower triangular matrix */	    nn = (*n - 1) / nb * nb + 1;	    i__3 = -nb;	    for (j = nn; i__3 < 0 ? j >= 1 : j <= 1; j += i__3) {/* Computing MIN */		i__1 = nb, i__4 = *n - j + 1;		jb = min(i__1,i__4);		if (j + jb <= *n) {/*                 Compute rows j+jb:n of current block column */		    i__1 = *n - j - jb + 1;		    dtrmm_("Left", "Lower", "No transpose", diag, &i__1, &jb, 			    &c_b18, &a[j + jb + (j + jb) * a_dim1], lda, &a[j 			    + jb + j * a_dim1], lda);		    i__1 = *n - j - jb + 1;		    dtrsm_("Right", "Lower", "No transpose", diag, &i__1, &jb, 			     &c_b22, &a[j + j * a_dim1], lda, &a[j + jb + j * 			    a_dim1], lda);		}/*              Compute inverse of current diagonal block */		dtrti2_("Lower", diag, &jb, &a[j + j * a_dim1], lda, info);/* L30: */	    }	}    }    return 0;/*     End of DTRTRI */} /* dtrtri_ */
 |