| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194 | /* dtptrs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;/* Subroutine */ int dtptrs_(char *uplo, char *trans, char *diag, integer *n, 	integer *nrhs, doublereal *ap, doublereal *b, integer *ldb, integer *	info){    /* System generated locals */    integer b_dim1, b_offset, i__1;    /* Local variables */    integer j, jc;    extern logical lsame_(char *, char *);    logical upper;    extern /* Subroutine */ int dtpsv_(char *, char *, char *, integer *, 	    doublereal *, doublereal *, integer *), 	    xerbla_(char *, integer *);    logical nounit;/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DTPTRS solves a triangular system of the form *//*     A * X = B  or  A**T * X = B, *//*  where A is a triangular matrix of order N stored in packed format, *//*  and B is an N-by-NRHS matrix.  A check is made to verify that A is *//*  nonsingular. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  A is upper triangular; *//*          = 'L':  A is lower triangular. *//*  TRANS   (input) CHARACTER*1 *//*          Specifies the form of the system of equations: *//*          = 'N':  A * X = B  (No transpose) *//*          = 'T':  A**T * X = B  (Transpose) *//*          = 'C':  A**H * X = B  (Conjugate transpose = Transpose) *//*  DIAG    (input) CHARACTER*1 *//*          = 'N':  A is non-unit triangular; *//*          = 'U':  A is unit triangular. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          The upper or lower triangular matrix A, packed columnwise in *//*          a linear array.  The j-th column of A is stored in the array *//*          AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the right hand side matrix B. *//*          On exit, if INFO = 0, the solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = i, the i-th diagonal element of A is zero, *//*                indicating that the matrix is singular and the *//*                solutions X have not been computed. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --ap;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    nounit = lsame_(diag, "N");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (! lsame_(trans, "N") && ! lsame_(trans, 	    "T") && ! lsame_(trans, "C")) {	*info = -2;    } else if (! nounit && ! lsame_(diag, "U")) {	*info = -3;    } else if (*n < 0) {	*info = -4;    } else if (*nrhs < 0) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -8;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DTPTRS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Check for singularity. */    if (nounit) {	if (upper) {	    jc = 1;	    i__1 = *n;	    for (*info = 1; *info <= i__1; ++(*info)) {		if (ap[jc + *info - 1] == 0.) {		    return 0;		}		jc += *info;/* L10: */	    }	} else {	    jc = 1;	    i__1 = *n;	    for (*info = 1; *info <= i__1; ++(*info)) {		if (ap[jc] == 0.) {		    return 0;		}		jc = jc + *n - *info + 1;/* L20: */	    }	}    }    *info = 0;/*     Solve A * x = b  or  A' * x = b. */    i__1 = *nrhs;    for (j = 1; j <= i__1; ++j) {	dtpsv_(uplo, trans, diag, n, &ap[1], &b[j * b_dim1 + 1], &c__1);/* L30: */    }    return 0;/*     End of DTPTRS */} /* dtptrs_ */
 |