| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497 | 
							- /* dtprfs.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b19 = -1.;
 
- /* Subroutine */ int dtprfs_(char *uplo, char *trans, char *diag, integer *n, 
 
- 	integer *nrhs, doublereal *ap, doublereal *b, integer *ldb, 
 
- 	doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, 
 
- 	doublereal *work, integer *iwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Local variables */
 
-     integer i__, j, k;
 
-     doublereal s;
 
-     integer kc;
 
-     doublereal xk;
 
-     integer nz;
 
-     doublereal eps;
 
-     integer kase;
 
-     doublereal safe1, safe2;
 
-     extern logical lsame_(char *, char *);
 
-     integer isave[3];
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), daxpy_(integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *), dtpmv_(char *, 
 
- 	    char *, char *, integer *, doublereal *, doublereal *, integer *);
 
-     logical upper;
 
-     extern /* Subroutine */ int dtpsv_(char *, char *, char *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), 
 
- 	    dlacn2_(integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, integer *);
 
-     extern doublereal dlamch_(char *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     logical notran;
 
-     char transt[1];
 
-     logical nounit;
 
-     doublereal lstres;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     Modified to call DLACN2 in place of DLACON, 5 Feb 03, SJH. */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DTPRFS provides error bounds and backward error estimates for the */
 
- /*  solution to a system of linear equations with a triangular packed */
 
- /*  coefficient matrix. */
 
- /*  The solution matrix X must be computed by DTPTRS or some other */
 
- /*  means before entering this routine.  DTPRFS does not do iterative */
 
- /*  refinement because doing so cannot improve the backward error. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          = 'U':  A is upper triangular; */
 
- /*          = 'L':  A is lower triangular. */
 
- /*  TRANS   (input) CHARACTER*1 */
 
- /*          Specifies the form of the system of equations: */
 
- /*          = 'N':  A * X = B  (No transpose) */
 
- /*          = 'T':  A**T * X = B  (Transpose) */
 
- /*          = 'C':  A**H * X = B  (Conjugate transpose = Transpose) */
 
- /*  DIAG    (input) CHARACTER*1 */
 
- /*          = 'N':  A is non-unit triangular; */
 
- /*          = 'U':  A is unit triangular. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrices B and X.  NRHS >= 0. */
 
- /*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          The upper or lower triangular matrix A, packed columnwise in */
 
- /*          a linear array.  The j-th column of A is stored in the array */
 
- /*          AP as follows: */
 
- /*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
 
- /*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
 
- /*          If DIAG = 'U', the diagonal elements of A are not referenced */
 
- /*          and are assumed to be 1. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          The right hand side matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (input) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          The solution matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The estimated forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j).  The estimate is as reliable as */
 
- /*          the estimate for RCOND, and is almost always a slight */
 
- /*          overestimate of the true error. */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in */
 
- /*          any element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Local Arrays .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     notran = lsame_(trans, "N");
 
-     nounit = lsame_(diag, "N");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (! notran && ! lsame_(trans, "T") && ! 
 
- 	    lsame_(trans, "C")) {
 
- 	*info = -2;
 
-     } else if (! nounit && ! lsame_(diag, "U")) {
 
- 	*info = -3;
 
-     } else if (*n < 0) {
 
- 	*info = -4;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -5;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -8;
 
-     } else if (*ldx < max(1,*n)) {
 
- 	*info = -10;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DTPRFS", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0 || *nrhs == 0) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    ferr[j] = 0.;
 
- 	    berr[j] = 0.;
 
- /* L10: */
 
- 	}
 
- 	return 0;
 
-     }
 
-     if (notran) {
 
- 	*(unsigned char *)transt = 'T';
 
-     } else {
 
- 	*(unsigned char *)transt = 'N';
 
-     }
 
- /*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
 
-     nz = *n + 1;
 
-     eps = dlamch_("Epsilon");
 
-     safmin = dlamch_("Safe minimum");
 
-     safe1 = nz * safmin;
 
-     safe2 = safe1 / eps;
 
- /*     Do for each right hand side */
 
-     i__1 = *nrhs;
 
-     for (j = 1; j <= i__1; ++j) {
 
- /*        Compute residual R = B - op(A) * X, */
 
- /*        where op(A) = A or A', depending on TRANS. */
 
- 	dcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[*n + 1], &c__1);
 
- 	dtpmv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1);
 
- 	daxpy_(n, &c_b19, &b[j * b_dim1 + 1], &c__1, &work[*n + 1], &c__1);
 
- /*        Compute componentwise relative backward error from formula */
 
- /*        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
 
- /*        where abs(Z) is the componentwise absolute value of the matrix */
 
- /*        or vector Z.  If the i-th component of the denominator is less */
 
- /*        than SAFE2, then SAFE1 is added to the i-th components of the */
 
- /*        numerator and denominator before dividing. */
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    work[i__] = (d__1 = b[i__ + j * b_dim1], abs(d__1));
 
- /* L20: */
 
- 	}
 
- 	if (notran) {
 
- /*           Compute abs(A)*abs(X) + abs(B). */
 
- 	    if (upper) {
 
- 		kc = 1;
 
- 		if (nounit) {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 			i__3 = k;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    work[i__] += (d__1 = ap[kc + i__ - 1], abs(d__1)) 
 
- 				    * xk;
 
- /* L30: */
 
- 			}
 
- 			kc += k;
 
- /* L40: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 			i__3 = k - 1;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    work[i__] += (d__1 = ap[kc + i__ - 1], abs(d__1)) 
 
- 				    * xk;
 
- /* L50: */
 
- 			}
 
- 			work[k] += xk;
 
- 			kc += k;
 
- /* L60: */
 
- 		    }
 
- 		}
 
- 	    } else {
 
- 		kc = 1;
 
- 		if (nounit) {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 			i__3 = *n;
 
- 			for (i__ = k; i__ <= i__3; ++i__) {
 
- 			    work[i__] += (d__1 = ap[kc + i__ - k], abs(d__1)) 
 
- 				    * xk;
 
- /* L70: */
 
- 			}
 
- 			kc = kc + *n - k + 1;
 
- /* L80: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			xk = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 			i__3 = *n;
 
- 			for (i__ = k + 1; i__ <= i__3; ++i__) {
 
- 			    work[i__] += (d__1 = ap[kc + i__ - k], abs(d__1)) 
 
- 				    * xk;
 
- /* L90: */
 
- 			}
 
- 			work[k] += xk;
 
- 			kc = kc + *n - k + 1;
 
- /* L100: */
 
- 		    }
 
- 		}
 
- 	    }
 
- 	} else {
 
- /*           Compute abs(A')*abs(X) + abs(B). */
 
- 	    if (upper) {
 
- 		kc = 1;
 
- 		if (nounit) {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			s = 0.;
 
- 			i__3 = k;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    s += (d__1 = ap[kc + i__ - 1], abs(d__1)) * (d__2 
 
- 				    = x[i__ + j * x_dim1], abs(d__2));
 
- /* L110: */
 
- 			}
 
- 			work[k] += s;
 
- 			kc += k;
 
- /* L120: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			s = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 			i__3 = k - 1;
 
- 			for (i__ = 1; i__ <= i__3; ++i__) {
 
- 			    s += (d__1 = ap[kc + i__ - 1], abs(d__1)) * (d__2 
 
- 				    = x[i__ + j * x_dim1], abs(d__2));
 
- /* L130: */
 
- 			}
 
- 			work[k] += s;
 
- 			kc += k;
 
- /* L140: */
 
- 		    }
 
- 		}
 
- 	    } else {
 
- 		kc = 1;
 
- 		if (nounit) {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			s = 0.;
 
- 			i__3 = *n;
 
- 			for (i__ = k; i__ <= i__3; ++i__) {
 
- 			    s += (d__1 = ap[kc + i__ - k], abs(d__1)) * (d__2 
 
- 				    = x[i__ + j * x_dim1], abs(d__2));
 
- /* L150: */
 
- 			}
 
- 			work[k] += s;
 
- 			kc = kc + *n - k + 1;
 
- /* L160: */
 
- 		    }
 
- 		} else {
 
- 		    i__2 = *n;
 
- 		    for (k = 1; k <= i__2; ++k) {
 
- 			s = (d__1 = x[k + j * x_dim1], abs(d__1));
 
- 			i__3 = *n;
 
- 			for (i__ = k + 1; i__ <= i__3; ++i__) {
 
- 			    s += (d__1 = ap[kc + i__ - k], abs(d__1)) * (d__2 
 
- 				    = x[i__ + j * x_dim1], abs(d__2));
 
- /* L170: */
 
- 			}
 
- 			work[k] += s;
 
- 			kc = kc + *n - k + 1;
 
- /* L180: */
 
- 		    }
 
- 		}
 
- 	    }
 
- 	}
 
- 	s = 0.;
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    if (work[i__] > safe2) {
 
- /* Computing MAX */
 
- 		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
 
- 			i__];
 
- 		s = max(d__2,d__3);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 
 
- 			/ (work[i__] + safe1);
 
- 		s = max(d__2,d__3);
 
- 	    }
 
- /* L190: */
 
- 	}
 
- 	berr[j] = s;
 
- /*        Bound error from formula */
 
- /*        norm(X - XTRUE) / norm(X) .le. FERR = */
 
- /*        norm( abs(inv(op(A)))* */
 
- /*           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
 
- /*        where */
 
- /*          norm(Z) is the magnitude of the largest component of Z */
 
- /*          inv(op(A)) is the inverse of op(A) */
 
- /*          abs(Z) is the componentwise absolute value of the matrix or */
 
- /*             vector Z */
 
- /*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
 
- /*          EPS is machine epsilon */
 
- /*        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
 
- /*        is incremented by SAFE1 if the i-th component of */
 
- /*        abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
 
- /*        Use DLACN2 to estimate the infinity-norm of the matrix */
 
- /*           inv(op(A)) * diag(W), */
 
- /*        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    if (work[i__] > safe2) {
 
- 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 
- 			work[i__];
 
- 	    } else {
 
- 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 
- 			work[i__] + safe1;
 
- 	    }
 
- /* L200: */
 
- 	}
 
- 	kase = 0;
 
- L210:
 
- 	dlacn2_(n, &work[(*n << 1) + 1], &work[*n + 1], &iwork[1], &ferr[j], &
 
- 		kase, isave);
 
- 	if (kase != 0) {
 
- 	    if (kase == 1) {
 
- /*              Multiply by diag(W)*inv(op(A)'). */
 
- 		dtpsv_(uplo, transt, diag, n, &ap[1], &work[*n + 1], &c__1);
 
- 		i__2 = *n;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    work[*n + i__] = work[i__] * work[*n + i__];
 
- /* L220: */
 
- 		}
 
- 	    } else {
 
- /*              Multiply by inv(op(A))*diag(W). */
 
- 		i__2 = *n;
 
- 		for (i__ = 1; i__ <= i__2; ++i__) {
 
- 		    work[*n + i__] = work[i__] * work[*n + i__];
 
- /* L230: */
 
- 		}
 
- 		dtpsv_(uplo, trans, diag, n, &ap[1], &work[*n + 1], &c__1);
 
- 	    }
 
- 	    goto L210;
 
- 	}
 
- /*        Normalize error. */
 
- 	lstres = 0.;
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
 
- 	    lstres = max(d__2,d__3);
 
- /* L240: */
 
- 	}
 
- 	if (lstres != 0.) {
 
- 	    ferr[j] /= lstres;
 
- 	}
 
- /* L250: */
 
-     }
 
-     return 0;
 
- /*     End of DTPRFS */
 
- } /* dtprfs_ */
 
 
  |