| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729 | /* dstemr.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b18 = .001;/* Subroutine */ int dstemr_(char *jobz, char *range, integer *n, doublereal *	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 	integer *iu, integer *m, doublereal *w, doublereal *z__, integer *ldz, 	 integer *nzc, integer *isuppz, logical *tryrac, doublereal *work, 	integer *lwork, integer *iwork, integer *liwork, integer *info){    /* System generated locals */    integer z_dim1, z_offset, i__1, i__2;    doublereal d__1, d__2;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j;    doublereal r1, r2;    integer jj;    doublereal cs;    integer in;    doublereal sn, wl, wu;    integer iil, iiu;    doublereal eps, tmp;    integer indd, iend, jblk, wend;    doublereal rmin, rmax;    integer itmp;    doublereal tnrm;    extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal 	    *, doublereal *, doublereal *);    integer inde2, itmp2;    doublereal rtol1, rtol2;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    doublereal scale;    integer indgp;    extern logical lsame_(char *, char *);    integer iinfo, iindw, ilast;    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 	    *, doublereal *, integer *);    integer lwmin;    logical wantz;    extern /* Subroutine */ int dlaev2_(doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *);    extern doublereal dlamch_(char *);    logical alleig;    integer ibegin;    logical indeig;    integer iindbl;    logical valeig;    extern /* Subroutine */ int dlarrc_(char *, integer *, doublereal *, 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 	     integer *, integer *, integer *), dlarre_(char *, 	    integer *, doublereal *, doublereal *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, integer *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *);    integer wbegin;    doublereal safmin;    extern /* Subroutine */ int dlarrj_(integer *, doublereal *, doublereal *, 	     integer *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 	     integer *), xerbla_(char *, integer *);    doublereal bignum;    integer inderr, iindwk, indgrs, offset;    extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);    extern /* Subroutine */ int dlarrr_(integer *, doublereal *, doublereal *, 	     integer *), dlarrv_(integer *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 	    integer *, integer *), dlasrt_(char *, integer *, doublereal *, 	    integer *);    doublereal thresh;    integer iinspl, ifirst, indwrk, liwmin, nzcmin;    doublereal pivmin;    integer nsplit;    doublereal smlnum;    logical lquery, zquery;/*  -- LAPACK computational routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSTEMR computes selected eigenvalues and, optionally, eigenvectors *//*  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has *//*  a well defined set of pairwise different real eigenvalues, the corresponding *//*  real eigenvectors are pairwise orthogonal. *//*  The spectrum may be computed either completely or partially by specifying *//*  either an interval (VL,VU] or a range of indices IL:IU for the desired *//*  eigenvalues. *//*  Depending on the number of desired eigenvalues, these are computed either *//*  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are *//*  computed by the use of various suitable L D L^T factorizations near clusters *//*  of close eigenvalues (referred to as RRRs, Relatively Robust *//*  Representations). An informal sketch of the algorithm follows. *//*  For each unreduced block (submatrix) of T, *//*     (a) Compute T - sigma I  = L D L^T, so that L and D *//*         define all the wanted eigenvalues to high relative accuracy. *//*         This means that small relative changes in the entries of D and L *//*         cause only small relative changes in the eigenvalues and *//*         eigenvectors. The standard (unfactored) representation of the *//*         tridiagonal matrix T does not have this property in general. *//*     (b) Compute the eigenvalues to suitable accuracy. *//*         If the eigenvectors are desired, the algorithm attains full *//*         accuracy of the computed eigenvalues only right before *//*         the corresponding vectors have to be computed, see steps c) and d). *//*     (c) For each cluster of close eigenvalues, select a new *//*         shift close to the cluster, find a new factorization, and refine *//*         the shifted eigenvalues to suitable accuracy. *//*     (d) For each eigenvalue with a large enough relative separation compute *//*         the corresponding eigenvector by forming a rank revealing twisted *//*         factorization. Go back to (c) for any clusters that remain. *//*  For more details, see: *//*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations *//*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices," *//*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. *//*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and *//*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, *//*    2004.  Also LAPACK Working Note 154. *//*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric *//*    tridiagonal eigenvalue/eigenvector problem", *//*    Computer Science Division Technical Report No. UCB/CSD-97-971, *//*    UC Berkeley, May 1997. *//*  Notes: *//*  1.DSTEMR works only on machines which follow IEEE-754 *//*  floating-point standard in their handling of infinities and NaNs. *//*  This permits the use of efficient inner loops avoiding a check for *//*  zero divisors. *//*  Arguments *//*  ========= *//*  JOBZ    (input) CHARACTER*1 *//*          = 'N':  Compute eigenvalues only; *//*          = 'V':  Compute eigenvalues and eigenvectors. *//*  RANGE   (input) CHARACTER*1 *//*          = 'A': all eigenvalues will be found. *//*          = 'V': all eigenvalues in the half-open interval (VL,VU] *//*                 will be found. *//*          = 'I': the IL-th through IU-th eigenvalues will be found. *//*  N       (input) INTEGER *//*          The order of the matrix.  N >= 0. *//*  D       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the N diagonal elements of the tridiagonal matrix *//*          T. On exit, D is overwritten. *//*  E       (input/output) DOUBLE PRECISION array, dimension (N) *//*          On entry, the (N-1) subdiagonal elements of the tridiagonal *//*          matrix T in elements 1 to N-1 of E. E(N) need not be set on *//*          input, but is used internally as workspace. *//*          On exit, E is overwritten. *//*  VL      (input) DOUBLE PRECISION *//*  VU      (input) DOUBLE PRECISION *//*          If RANGE='V', the lower and upper bounds of the interval to *//*          be searched for eigenvalues. VL < VU. *//*          Not referenced if RANGE = 'A' or 'I'. *//*  IL      (input) INTEGER *//*  IU      (input) INTEGER *//*          If RANGE='I', the indices (in ascending order) of the *//*          smallest and largest eigenvalues to be returned. *//*          1 <= IL <= IU <= N, if N > 0. *//*          Not referenced if RANGE = 'A' or 'V'. *//*  M       (output) INTEGER *//*          The total number of eigenvalues found.  0 <= M <= N. *//*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. *//*  W       (output) DOUBLE PRECISION array, dimension (N) *//*          The first M elements contain the selected eigenvalues in *//*          ascending order. *//*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) *//*          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z *//*          contain the orthonormal eigenvectors of the matrix T *//*          corresponding to the selected eigenvalues, with the i-th *//*          column of Z holding the eigenvector associated with W(i). *//*          If JOBZ = 'N', then Z is not referenced. *//*          Note: the user must ensure that at least max(1,M) columns are *//*          supplied in the array Z; if RANGE = 'V', the exact value of M *//*          is not known in advance and can be computed with a workspace *//*          query by setting NZC = -1, see below. *//*  LDZ     (input) INTEGER *//*          The leading dimension of the array Z.  LDZ >= 1, and if *//*          JOBZ = 'V', then LDZ >= max(1,N). *//*  NZC     (input) INTEGER *//*          The number of eigenvectors to be held in the array Z. *//*          If RANGE = 'A', then NZC >= max(1,N). *//*          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. *//*          If RANGE = 'I', then NZC >= IU-IL+1. *//*          If NZC = -1, then a workspace query is assumed; the *//*          routine calculates the number of columns of the array Z that *//*          are needed to hold the eigenvectors. *//*          This value is returned as the first entry of the Z array, and *//*          no error message related to NZC is issued by XERBLA. *//*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) *//*          The support of the eigenvectors in Z, i.e., the indices *//*          indicating the nonzero elements in Z. The i-th computed eigenvector *//*          is nonzero only in elements ISUPPZ( 2*i-1 ) through *//*          ISUPPZ( 2*i ). This is relevant in the case when the matrix *//*          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. *//*  TRYRAC  (input/output) LOGICAL *//*          If TRYRAC.EQ..TRUE., indicates that the code should check whether *//*          the tridiagonal matrix defines its eigenvalues to high relative *//*          accuracy.  If so, the code uses relative-accuracy preserving *//*          algorithms that might be (a bit) slower depending on the matrix. *//*          If the matrix does not define its eigenvalues to high relative *//*          accuracy, the code can uses possibly faster algorithms. *//*          If TRYRAC.EQ..FALSE., the code is not required to guarantee *//*          relatively accurate eigenvalues and can use the fastest possible *//*          techniques. *//*          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix *//*          does not define its eigenvalues to high relative accuracy. *//*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) *//*          On exit, if INFO = 0, WORK(1) returns the optimal *//*          (and minimal) LWORK. *//*  LWORK   (input) INTEGER *//*          The dimension of the array WORK. LWORK >= max(1,18*N) *//*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. *//*          If LWORK = -1, then a workspace query is assumed; the routine *//*          only calculates the optimal size of the WORK array, returns *//*          this value as the first entry of the WORK array, and no error *//*          message related to LWORK is issued by XERBLA. *//*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) *//*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *//*  LIWORK  (input) INTEGER *//*          The dimension of the array IWORK.  LIWORK >= max(1,10*N) *//*          if the eigenvectors are desired, and LIWORK >= max(1,8*N) *//*          if only the eigenvalues are to be computed. *//*          If LIWORK = -1, then a workspace query is assumed; the *//*          routine only calculates the optimal size of the IWORK array, *//*          returns this value as the first entry of the IWORK array, and *//*          no error message related to LIWORK is issued by XERBLA. *//*  INFO    (output) INTEGER *//*          On exit, INFO *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*          > 0:  if INFO = 1X, internal error in DLARRE, *//*                if INFO = 2X, internal error in DLARRV. *//*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is *//*                the nonzero error code returned by DLARRE or *//*                DLARRV, respectively. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Beresford Parlett, University of California, Berkeley, USA *//*     Jim Demmel, University of California, Berkeley, USA *//*     Inderjit Dhillon, University of Texas, Austin, USA *//*     Osni Marques, LBNL/NERSC, USA *//*     Christof Voemel, University of California, Berkeley, USA *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    --e;    --w;    z_dim1 = *ldz;    z_offset = 1 + z_dim1;    z__ -= z_offset;    --isuppz;    --work;    --iwork;    /* Function Body */    wantz = lsame_(jobz, "V");    alleig = lsame_(range, "A");    valeig = lsame_(range, "V");    indeig = lsame_(range, "I");    lquery = *lwork == -1 || *liwork == -1;    zquery = *nzc == -1;/*     DSTEMR needs WORK of size 6*N, IWORK of size 3*N. *//*     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. *//*     Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. */    if (wantz) {	lwmin = *n * 18;	liwmin = *n * 10;    } else {/*        need less workspace if only the eigenvalues are wanted */	lwmin = *n * 12;	liwmin = *n << 3;    }    wl = 0.;    wu = 0.;    iil = 0;    iiu = 0;    if (valeig) {/*        We do not reference VL, VU in the cases RANGE = 'I','A' *//*        The interval (WL, WU] contains all the wanted eigenvalues. *//*        It is either given by the user or computed in DLARRE. */	wl = *vl;	wu = *vu;    } else if (indeig) {/*        We do not reference IL, IU in the cases RANGE = 'V','A' */	iil = *il;	iiu = *iu;    }    *info = 0;    if (! (wantz || lsame_(jobz, "N"))) {	*info = -1;    } else if (! (alleig || valeig || indeig)) {	*info = -2;    } else if (*n < 0) {	*info = -3;    } else if (valeig && *n > 0 && wu <= wl) {	*info = -7;    } else if (indeig && (iil < 1 || iil > *n)) {	*info = -8;    } else if (indeig && (iiu < iil || iiu > *n)) {	*info = -9;    } else if (*ldz < 1 || wantz && *ldz < *n) {	*info = -13;    } else if (*lwork < lwmin && ! lquery) {	*info = -17;    } else if (*liwork < liwmin && ! lquery) {	*info = -19;    }/*     Get machine constants. */    safmin = dlamch_("Safe minimum");    eps = dlamch_("Precision");    smlnum = safmin / eps;    bignum = 1. / smlnum;    rmin = sqrt(smlnum);/* Computing MIN */    d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));    rmax = min(d__1,d__2);    if (*info == 0) {	work[1] = (doublereal) lwmin;	iwork[1] = liwmin;	if (wantz && alleig) {	    nzcmin = *n;	} else if (wantz && valeig) {	    dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &		    itmp2, info);	} else if (wantz && indeig) {	    nzcmin = iiu - iil + 1;	} else {/*           WANTZ .EQ. FALSE. */	    nzcmin = 0;	}	if (zquery && *info == 0) {	    z__[z_dim1 + 1] = (doublereal) nzcmin;	} else if (*nzc < nzcmin && ! zquery) {	    *info = -14;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSTEMR", &i__1);	return 0;    } else if (lquery || zquery) {	return 0;    }/*     Handle N = 0, 1, and 2 cases immediately */    *m = 0;    if (*n == 0) {	return 0;    }    if (*n == 1) {	if (alleig || indeig) {	    *m = 1;	    w[1] = d__[1];	} else {	    if (wl < d__[1] && wu >= d__[1]) {		*m = 1;		w[1] = d__[1];	    }	}	if (wantz && ! zquery) {	    z__[z_dim1 + 1] = 1.;	    isuppz[1] = 1;	    isuppz[2] = 1;	}	return 0;    }    if (*n == 2) {	if (! wantz) {	    dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);	} else if (wantz && ! zquery) {	    dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);	}	if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {	    ++(*m);	    w[*m] = r2;	    if (wantz && ! zquery) {		z__[*m * z_dim1 + 1] = -sn;		z__[*m * z_dim1 + 2] = cs;/*              Note: At most one of SN and CS can be zero. */		if (sn != 0.) {		    if (cs != 0.) {			isuppz[(*m << 1) - 1] = 1;			isuppz[(*m << 1) - 1] = 2;		    } else {			isuppz[(*m << 1) - 1] = 1;			isuppz[(*m << 1) - 1] = 1;		    }		} else {		    isuppz[(*m << 1) - 1] = 2;		    isuppz[*m * 2] = 2;		}	    }	}	if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {	    ++(*m);	    w[*m] = r1;	    if (wantz && ! zquery) {		z__[*m * z_dim1 + 1] = cs;		z__[*m * z_dim1 + 2] = sn;/*              Note: At most one of SN and CS can be zero. */		if (sn != 0.) {		    if (cs != 0.) {			isuppz[(*m << 1) - 1] = 1;			isuppz[(*m << 1) - 1] = 2;		    } else {			isuppz[(*m << 1) - 1] = 1;			isuppz[(*m << 1) - 1] = 1;		    }		} else {		    isuppz[(*m << 1) - 1] = 2;		    isuppz[*m * 2] = 2;		}	    }	}	return 0;    }/*     Continue with general N */    indgrs = 1;    inderr = (*n << 1) + 1;    indgp = *n * 3 + 1;    indd = (*n << 2) + 1;    inde2 = *n * 5 + 1;    indwrk = *n * 6 + 1;    iinspl = 1;    iindbl = *n + 1;    iindw = (*n << 1) + 1;    iindwk = *n * 3 + 1;/*     Scale matrix to allowable range, if necessary. *//*     The allowable range is related to the PIVMIN parameter; see the *//*     comments in DLARRD.  The preference for scaling small values *//*     up is heuristic; we expect users' matrices not to be close to the *//*     RMAX threshold. */    scale = 1.;    tnrm = dlanst_("M", n, &d__[1], &e[1]);    if (tnrm > 0. && tnrm < rmin) {	scale = rmin / tnrm;    } else if (tnrm > rmax) {	scale = rmax / tnrm;    }    if (scale != 1.) {	dscal_(n, &scale, &d__[1], &c__1);	i__1 = *n - 1;	dscal_(&i__1, &scale, &e[1], &c__1);	tnrm *= scale;	if (valeig) {/*           If eigenvalues in interval have to be found, *//*           scale (WL, WU] accordingly */	    wl *= scale;	    wu *= scale;	}    }/*     Compute the desired eigenvalues of the tridiagonal after splitting *//*     into smaller subblocks if the corresponding off-diagonal elements *//*     are small *//*     THRESH is the splitting parameter for DLARRE *//*     A negative THRESH forces the old splitting criterion based on the *//*     size of the off-diagonal. A positive THRESH switches to splitting *//*     which preserves relative accuracy. */    if (*tryrac) {/*        Test whether the matrix warrants the more expensive relative approach. */	dlarrr_(n, &d__[1], &e[1], &iinfo);    } else {/*        The user does not care about relative accurately eigenvalues */	iinfo = -1;    }/*     Set the splitting criterion */    if (iinfo == 0) {	thresh = eps;    } else {	thresh = -eps;/*        relative accuracy is desired but T does not guarantee it */	*tryrac = FALSE_;    }    if (*tryrac) {/*        Copy original diagonal, needed to guarantee relative accuracy */	dcopy_(n, &d__[1], &c__1, &work[indd], &c__1);    }/*     Store the squares of the offdiagonal values of T */    i__1 = *n - 1;    for (j = 1; j <= i__1; ++j) {/* Computing 2nd power */	d__1 = e[j];	work[inde2 + j - 1] = d__1 * d__1;/* L5: */    }/*     Set the tolerance parameters for bisection */    if (! wantz) {/*        DLARRE computes the eigenvalues to full precision. */	rtol1 = eps * 4.;	rtol2 = eps * 4.;    } else {/*        DLARRE computes the eigenvalues to less than full precision. *//*        DLARRV will refine the eigenvalue approximations, and we can *//*        need less accurate initial bisection in DLARRE. *//*        Note: these settings do only affect the subset case and DLARRE */	rtol1 = sqrt(eps);/* Computing MAX */	d__1 = sqrt(eps) * .005, d__2 = eps * 4.;	rtol2 = max(d__1,d__2);    }    dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], &	    rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &work[	    inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &work[	    indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);    if (iinfo != 0) {	*info = abs(iinfo) + 10;	return 0;    }/*     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired *//*     part of the spectrum. All desired eigenvalues are contained in *//*     (WL,WU] */    if (wantz) {/*        Compute the desired eigenvectors corresponding to the computed *//*        eigenvalues */	dlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &		c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &work[		indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[		z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[iindwk], &		iinfo);	if (iinfo != 0) {	    *info = abs(iinfo) + 20;	    return 0;	}    } else {/*        DLARRE computes eigenvalues of the (shifted) root representation *//*        DLARRV returns the eigenvalues of the unshifted matrix. *//*        However, if the eigenvectors are not desired by the user, we need *//*        to apply the corresponding shifts from DLARRE to obtain the *//*        eigenvalues of the original matrix. */	i__1 = *m;	for (j = 1; j <= i__1; ++j) {	    itmp = iwork[iindbl + j - 1];	    w[j] += e[iwork[iinspl + itmp - 1]];/* L20: */	}    }    if (*tryrac) {/*        Refine computed eigenvalues so that they are relatively accurate *//*        with respect to the original matrix T. */	ibegin = 1;	wbegin = 1;	i__1 = iwork[iindbl + *m - 1];	for (jblk = 1; jblk <= i__1; ++jblk) {	    iend = iwork[iinspl + jblk - 1];	    in = iend - ibegin + 1;	    wend = wbegin - 1;/*           check if any eigenvalues have to be refined in this block */L36:	    if (wend < *m) {		if (iwork[iindbl + wend] == jblk) {		    ++wend;		    goto L36;		}	    }	    if (wend < wbegin) {		ibegin = iend + 1;		goto L39;	    }	    offset = iwork[iindw + wbegin - 1] - 1;	    ifirst = iwork[iindw + wbegin - 1];	    ilast = iwork[iindw + wend - 1];	    rtol2 = eps * 4.;	    dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1], 		    &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &work[		    inderr + wbegin - 1], &work[indwrk], &iwork[iindwk], &		    pivmin, &tnrm, &iinfo);	    ibegin = iend + 1;	    wbegin = wend + 1;L39:	    ;	}    }/*     If matrix was scaled, then rescale eigenvalues appropriately. */    if (scale != 1.) {	d__1 = 1. / scale;	dscal_(m, &d__1, &w[1], &c__1);    }/*     If eigenvalues are not in increasing order, then sort them, *//*     possibly along with eigenvectors. */    if (nsplit > 1) {	if (! wantz) {	    dlasrt_("I", m, &w[1], &iinfo);	    if (iinfo != 0) {		*info = 3;		return 0;	    }	} else {	    i__1 = *m - 1;	    for (j = 1; j <= i__1; ++j) {		i__ = 0;		tmp = w[j];		i__2 = *m;		for (jj = j + 1; jj <= i__2; ++jj) {		    if (w[jj] < tmp) {			i__ = jj;			tmp = w[jj];		    }/* L50: */		}		if (i__ != 0) {		    w[i__] = w[j];		    w[j] = tmp;		    if (wantz) {			dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 				z_dim1 + 1], &c__1);			itmp = isuppz[(i__ << 1) - 1];			isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];			isuppz[(j << 1) - 1] = itmp;			itmp = isuppz[i__ * 2];			isuppz[i__ * 2] = isuppz[j * 2];			isuppz[j * 2] = itmp;		    }		}/* L60: */	    }	}    }    work[1] = (doublereal) lwmin;    iwork[1] = liwmin;    return 0;/*     End of DSTEMR */} /* dstemr_ */
 |