| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 | 
							- /* dstedc.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__9 = 9;
 
- static integer c__0 = 0;
 
- static integer c__2 = 2;
 
- static doublereal c_b17 = 0.;
 
- static doublereal c_b18 = 1.;
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dstedc_(char *compz, integer *n, doublereal *d__, 
 
- 	doublereal *e, doublereal *z__, integer *ldz, doublereal *work, 
 
- 	integer *lwork, integer *iwork, integer *liwork, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer z_dim1, z_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double log(doublereal);
 
-     integer pow_ii(integer *, integer *);
 
-     double sqrt(doublereal);
 
-     /* Local variables */
 
-     integer i__, j, k, m;
 
-     doublereal p;
 
-     integer ii, lgn;
 
-     doublereal eps, tiny;
 
-     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     extern logical lsame_(char *, char *);
 
-     extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer lwmin;
 
-     extern /* Subroutine */ int dlaed0_(integer *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	     integer *, doublereal *, integer *, integer *);
 
-     integer start;
 
-     extern doublereal dlamch_(char *);
 
-     extern /* Subroutine */ int dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *), dlacpy_(char *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    dlaset_(char *, integer *, integer *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *);
 
-     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 
- 	    integer *, integer *);
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     integer finish;
 
-     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
 
-     extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, 
 
- 	     integer *), dlasrt_(char *, integer *, doublereal *, integer *);
 
-     integer liwmin, icompz;
 
-     extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *);
 
-     doublereal orgnrm;
 
-     logical lquery;
 
-     integer smlsiz, storez, strtrw;
 
- /*  -- LAPACK driver routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a */
 
- /*  symmetric tridiagonal matrix using the divide and conquer method. */
 
- /*  The eigenvectors of a full or band real symmetric matrix can also be */
 
- /*  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this */
 
- /*  matrix to tridiagonal form. */
 
- /*  This code makes very mild assumptions about floating point */
 
- /*  arithmetic. It will work on machines with a guard digit in */
 
- /*  add/subtract, or on those binary machines without guard digits */
 
- /*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */
 
- /*  It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none.  See DLAED3 for details. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  COMPZ   (input) CHARACTER*1 */
 
- /*          = 'N':  Compute eigenvalues only. */
 
- /*          = 'I':  Compute eigenvectors of tridiagonal matrix also. */
 
- /*          = 'V':  Compute eigenvectors of original dense symmetric */
 
- /*                  matrix also.  On entry, Z contains the orthogonal */
 
- /*                  matrix used to reduce the original matrix to */
 
- /*                  tridiagonal form. */
 
- /*  N       (input) INTEGER */
 
- /*          The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, the diagonal elements of the tridiagonal matrix. */
 
- /*          On exit, if INFO = 0, the eigenvalues in ascending order. */
 
- /*  E       (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, the subdiagonal elements of the tridiagonal matrix. */
 
- /*          On exit, E has been destroyed. */
 
- /*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
 
- /*          On entry, if COMPZ = 'V', then Z contains the orthogonal */
 
- /*          matrix used in the reduction to tridiagonal form. */
 
- /*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
 
- /*          orthonormal eigenvectors of the original symmetric matrix, */
 
- /*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
 
- /*          of the symmetric tridiagonal matrix. */
 
- /*          If  COMPZ = 'N', then Z is not referenced. */
 
- /*  LDZ     (input) INTEGER */
 
- /*          The leading dimension of the array Z.  LDZ >= 1. */
 
- /*          If eigenvectors are desired, then LDZ >= max(1,N). */
 
- /*  WORK    (workspace/output) DOUBLE PRECISION array, */
 
- /*                                         dimension (LWORK) */
 
- /*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 
- /*  LWORK   (input) INTEGER */
 
- /*          The dimension of the array WORK. */
 
- /*          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1. */
 
- /*          If COMPZ = 'V' and N > 1 then LWORK must be at least */
 
- /*                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ), */
 
- /*                         where lg( N ) = smallest integer k such */
 
- /*                         that 2**k >= N. */
 
- /*          If COMPZ = 'I' and N > 1 then LWORK must be at least */
 
- /*                         ( 1 + 4*N + N**2 ). */
 
- /*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
 
- /*          equal to the minimum divide size, usually 25, then LWORK need */
 
- /*          only be max(1,2*(N-1)). */
 
- /*          If LWORK = -1, then a workspace query is assumed; the routine */
 
- /*          only calculates the optimal size of the WORK array, returns */
 
- /*          this value as the first entry of the WORK array, and no error */
 
- /*          message related to LWORK is issued by XERBLA. */
 
- /*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
 
- /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 
- /*  LIWORK  (input) INTEGER */
 
- /*          The dimension of the array IWORK. */
 
- /*          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1. */
 
- /*          If COMPZ = 'V' and N > 1 then LIWORK must be at least */
 
- /*                         ( 6 + 6*N + 5*N*lg N ). */
 
- /*          If COMPZ = 'I' and N > 1 then LIWORK must be at least */
 
- /*                         ( 3 + 5*N ). */
 
- /*          Note that for COMPZ = 'I' or 'V', then if N is less than or */
 
- /*          equal to the minimum divide size, usually 25, then LIWORK */
 
- /*          need only be 1. */
 
- /*          If LIWORK = -1, then a workspace query is assumed; the */
 
- /*          routine only calculates the optimal size of the IWORK array, */
 
- /*          returns this value as the first entry of the IWORK array, and */
 
- /*          no error message related to LIWORK is issued by XERBLA. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit. */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*          > 0:  The algorithm failed to compute an eigenvalue while */
 
- /*                working on the submatrix lying in rows and columns */
 
- /*                INFO/(N+1) through mod(INFO,N+1). */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Jeff Rutter, Computer Science Division, University of California */
 
- /*     at Berkeley, USA */
 
- /*  Modified by Francoise Tisseur, University of Tennessee. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     z_dim1 = *ldz;
 
-     z_offset = 1 + z_dim1;
 
-     z__ -= z_offset;
 
-     --work;
 
-     --iwork;
 
-     /* Function Body */
 
-     *info = 0;
 
-     lquery = *lwork == -1 || *liwork == -1;
 
-     if (lsame_(compz, "N")) {
 
- 	icompz = 0;
 
-     } else if (lsame_(compz, "V")) {
 
- 	icompz = 1;
 
-     } else if (lsame_(compz, "I")) {
 
- 	icompz = 2;
 
-     } else {
 
- 	icompz = -1;
 
-     }
 
-     if (icompz < 0) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
 
- 	*info = -6;
 
-     }
 
-     if (*info == 0) {
 
- /*        Compute the workspace requirements */
 
- 	smlsiz = ilaenv_(&c__9, "DSTEDC", " ", &c__0, &c__0, &c__0, &c__0);
 
- 	if (*n <= 1 || icompz == 0) {
 
- 	    liwmin = 1;
 
- 	    lwmin = 1;
 
- 	} else if (*n <= smlsiz) {
 
- 	    liwmin = 1;
 
- 	    lwmin = *n - 1 << 1;
 
- 	} else {
 
- 	    lgn = (integer) (log((doublereal) (*n)) / log(2.));
 
- 	    if (pow_ii(&c__2, &lgn) < *n) {
 
- 		++lgn;
 
- 	    }
 
- 	    if (pow_ii(&c__2, &lgn) < *n) {
 
- 		++lgn;
 
- 	    }
 
- 	    if (icompz == 1) {
 
- /* Computing 2nd power */
 
- 		i__1 = *n;
 
- 		lwmin = *n * 3 + 1 + (*n << 1) * lgn + i__1 * i__1 * 3;
 
- 		liwmin = *n * 6 + 6 + *n * 5 * lgn;
 
- 	    } else if (icompz == 2) {
 
- /* Computing 2nd power */
 
- 		i__1 = *n;
 
- 		lwmin = (*n << 2) + 1 + i__1 * i__1;
 
- 		liwmin = *n * 5 + 3;
 
- 	    }
 
- 	}
 
- 	work[1] = (doublereal) lwmin;
 
- 	iwork[1] = liwmin;
 
- 	if (*lwork < lwmin && ! lquery) {
 
- 	    *info = -8;
 
- 	} else if (*liwork < liwmin && ! lquery) {
 
- 	    *info = -10;
 
- 	}
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSTEDC", &i__1);
 
- 	return 0;
 
-     } else if (lquery) {
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
-     if (*n == 1) {
 
- 	if (icompz != 0) {
 
- 	    z__[z_dim1 + 1] = 1.;
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     If the following conditional clause is removed, then the routine */
 
- /*     will use the Divide and Conquer routine to compute only the */
 
- /*     eigenvalues, which requires (3N + 3N**2) real workspace and */
 
- /*     (2 + 5N + 2N lg(N)) integer workspace. */
 
- /*     Since on many architectures DSTERF is much faster than any other */
 
- /*     algorithm for finding eigenvalues only, it is used here */
 
- /*     as the default. If the conditional clause is removed, then */
 
- /*     information on the size of workspace needs to be changed. */
 
- /*     If COMPZ = 'N', use DSTERF to compute the eigenvalues. */
 
-     if (icompz == 0) {
 
- 	dsterf_(n, &d__[1], &e[1], info);
 
- 	goto L50;
 
-     }
 
- /*     If N is smaller than the minimum divide size (SMLSIZ+1), then */
 
- /*     solve the problem with another solver. */
 
-     if (*n <= smlsiz) {
 
- 	dsteqr_(compz, n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
 
-     } else {
 
- /*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later */
 
- /*        use. */
 
- 	if (icompz == 1) {
 
- 	    storez = *n * *n + 1;
 
- 	} else {
 
- 	    storez = 1;
 
- 	}
 
- 	if (icompz == 2) {
 
- 	    dlaset_("Full", n, n, &c_b17, &c_b18, &z__[z_offset], ldz);
 
- 	}
 
- /*        Scale. */
 
- 	orgnrm = dlanst_("M", n, &d__[1], &e[1]);
 
- 	if (orgnrm == 0.) {
 
- 	    goto L50;
 
- 	}
 
- 	eps = dlamch_("Epsilon");
 
- 	start = 1;
 
- /*        while ( START <= N ) */
 
- L10:
 
- 	if (start <= *n) {
 
- /*           Let FINISH be the position of the next subdiagonal entry */
 
- /*           such that E( FINISH ) <= TINY or FINISH = N if no such */
 
- /*           subdiagonal exists.  The matrix identified by the elements */
 
- /*           between START and FINISH constitutes an independent */
 
- /*           sub-problem. */
 
- 	    finish = start;
 
- L20:
 
- 	    if (finish < *n) {
 
- 		tiny = eps * sqrt((d__1 = d__[finish], abs(d__1))) * sqrt((
 
- 			d__2 = d__[finish + 1], abs(d__2)));
 
- 		if ((d__1 = e[finish], abs(d__1)) > tiny) {
 
- 		    ++finish;
 
- 		    goto L20;
 
- 		}
 
- 	    }
 
- /*           (Sub) Problem determined.  Compute its size and solve it. */
 
- 	    m = finish - start + 1;
 
- 	    if (m == 1) {
 
- 		start = finish + 1;
 
- 		goto L10;
 
- 	    }
 
- 	    if (m > smlsiz) {
 
- /*              Scale. */
 
- 		orgnrm = dlanst_("M", &m, &d__[start], &e[start]);
 
- 		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &m, &c__1, &d__[
 
- 			start], &m, info);
 
- 		i__1 = m - 1;
 
- 		i__2 = m - 1;
 
- 		dlascl_("G", &c__0, &c__0, &orgnrm, &c_b18, &i__1, &c__1, &e[
 
- 			start], &i__2, info);
 
- 		if (icompz == 1) {
 
- 		    strtrw = 1;
 
- 		} else {
 
- 		    strtrw = start;
 
- 		}
 
- 		dlaed0_(&icompz, n, &m, &d__[start], &e[start], &z__[strtrw + 
 
- 			start * z_dim1], ldz, &work[1], n, &work[storez], &
 
- 			iwork[1], info);
 
- 		if (*info != 0) {
 
- 		    *info = (*info / (m + 1) + start - 1) * (*n + 1) + *info %
 
- 			     (m + 1) + start - 1;
 
- 		    goto L50;
 
- 		}
 
- /*              Scale back. */
 
- 		dlascl_("G", &c__0, &c__0, &c_b18, &orgnrm, &m, &c__1, &d__[
 
- 			start], &m, info);
 
- 	    } else {
 
- 		if (icompz == 1) {
 
- /*                 Since QR won't update a Z matrix which is larger than */
 
- /*                 the length of D, we must solve the sub-problem in a */
 
- /*                 workspace and then multiply back into Z. */
 
- 		    dsteqr_("I", &m, &d__[start], &e[start], &work[1], &m, &
 
- 			    work[m * m + 1], info);
 
- 		    dlacpy_("A", n, &m, &z__[start * z_dim1 + 1], ldz, &work[
 
- 			    storez], n);
 
- 		    dgemm_("N", "N", n, &m, &m, &c_b18, &work[storez], n, &
 
- 			    work[1], &m, &c_b17, &z__[start * z_dim1 + 1], 
 
- 			    ldz);
 
- 		} else if (icompz == 2) {
 
- 		    dsteqr_("I", &m, &d__[start], &e[start], &z__[start + 
 
- 			    start * z_dim1], ldz, &work[1], info);
 
- 		} else {
 
- 		    dsterf_(&m, &d__[start], &e[start], info);
 
- 		}
 
- 		if (*info != 0) {
 
- 		    *info = start * (*n + 1) + finish;
 
- 		    goto L50;
 
- 		}
 
- 	    }
 
- 	    start = finish + 1;
 
- 	    goto L10;
 
- 	}
 
- /*        endwhile */
 
- /*        If the problem split any number of times, then the eigenvalues */
 
- /*        will not be properly ordered.  Here we permute the eigenvalues */
 
- /*        (and the associated eigenvectors) into ascending order. */
 
- 	if (m != *n) {
 
- 	    if (icompz == 0) {
 
- /*              Use Quick Sort */
 
- 		dlasrt_("I", n, &d__[1], info);
 
- 	    } else {
 
- /*              Use Selection Sort to minimize swaps of eigenvectors */
 
- 		i__1 = *n;
 
- 		for (ii = 2; ii <= i__1; ++ii) {
 
- 		    i__ = ii - 1;
 
- 		    k = i__;
 
- 		    p = d__[i__];
 
- 		    i__2 = *n;
 
- 		    for (j = ii; j <= i__2; ++j) {
 
- 			if (d__[j] < p) {
 
- 			    k = j;
 
- 			    p = d__[j];
 
- 			}
 
- /* L30: */
 
- 		    }
 
- 		    if (k != i__) {
 
- 			d__[k] = d__[i__];
 
- 			d__[i__] = p;
 
- 			dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * 
 
- 				z_dim1 + 1], &c__1);
 
- 		    }
 
- /* L40: */
 
- 		}
 
- 	    }
 
- 	}
 
-     }
 
- L50:
 
-     work[1] = (doublereal) lwmin;
 
-     iwork[1] = liwmin;
 
-     return 0;
 
- /*     End of DSTEDC */
 
- } /* dstedc_ */
 
 
  |