| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457 | 
							- /* dsptrs.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b7 = -1.;
 
- static integer c__1 = 1;
 
- static doublereal c_b19 = 1.;
 
- /* Subroutine */ int dsptrs_(char *uplo, integer *n, integer *nrhs, 
 
- 	doublereal *ap, integer *ipiv, doublereal *b, integer *ldb, integer *
 
- 	info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, i__1;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer j, k;
 
-     doublereal ak, bk;
 
-     integer kc, kp;
 
-     doublereal akm1, bkm1;
 
-     extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, 
 
- 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    integer *);
 
-     doublereal akm1k;
 
-     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 
- 	    integer *);
 
-     extern logical lsame_(char *, char *);
 
-     doublereal denom;
 
-     extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *), dswap_(integer *, 
 
- 	    doublereal *, integer *, doublereal *, integer *);
 
-     logical upper;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DSPTRS solves a system of linear equations A*X = B with a real */
 
- /*  symmetric matrix A stored in packed format using the factorization */
 
- /*  A = U*D*U**T or A = L*D*L**T computed by DSPTRF. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  UPLO    (input) CHARACTER*1 */
 
- /*          Specifies whether the details of the factorization are stored */
 
- /*          as an upper or lower triangular matrix. */
 
- /*          = 'U':  Upper triangular, form is A = U*D*U**T; */
 
- /*          = 'L':  Lower triangular, form is A = L*D*L**T. */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
 
- /*          The block diagonal matrix D and the multipliers used to */
 
- /*          obtain the factor U or L as computed by DSPTRF, stored as a */
 
- /*          packed triangular matrix. */
 
- /*  IPIV    (input) INTEGER array, dimension (N) */
 
- /*          Details of the interchanges and the block structure of D */
 
- /*          as determined by DSPTRF. */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          On entry, the right hand side matrix B. */
 
- /*          On exit, the solution matrix X. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0: if INFO = -i, the i-th argument had an illegal value */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --ap;
 
-     --ipiv;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     upper = lsame_(uplo, "U");
 
-     if (! upper && ! lsame_(uplo, "L")) {
 
- 	*info = -1;
 
-     } else if (*n < 0) {
 
- 	*info = -2;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -3;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -7;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DSPTRS", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0 || *nrhs == 0) {
 
- 	return 0;
 
-     }
 
-     if (upper) {
 
- /*        Solve A*X = B, where A = U*D*U'. */
 
- /*        First solve U*D*X = B, overwriting B with X. */
 
- /*        K is the main loop index, decreasing from N to 1 in steps of */
 
- /*        1 or 2, depending on the size of the diagonal blocks. */
 
- 	k = *n;
 
- 	kc = *n * (*n + 1) / 2 + 1;
 
- L10:
 
- /*        If K < 1, exit from loop. */
 
- 	if (k < 1) {
 
- 	    goto L30;
 
- 	}
 
- 	kc -= k;
 
- 	if (ipiv[k] > 0) {
 
- /*           1 x 1 diagonal block */
 
- /*           Interchange rows K and IPIV(K). */
 
- 	    kp = ipiv[k];
 
- 	    if (kp != k) {
 
- 		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- /*           Multiply by inv(U(K)), where U(K) is the transformation */
 
- /*           stored in column K of A. */
 
- 	    i__1 = k - 1;
 
- 	    dger_(&i__1, nrhs, &c_b7, &ap[kc], &c__1, &b[k + b_dim1], ldb, &b[
 
- 		    b_dim1 + 1], ldb);
 
- /*           Multiply by the inverse of the diagonal block. */
 
- 	    d__1 = 1. / ap[kc + k - 1];
 
- 	    dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
 
- 	    --k;
 
- 	} else {
 
- /*           2 x 2 diagonal block */
 
- /*           Interchange rows K-1 and -IPIV(K). */
 
- 	    kp = -ipiv[k];
 
- 	    if (kp != k - 1) {
 
- 		dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- /*           Multiply by inv(U(K)), where U(K) is the transformation */
 
- /*           stored in columns K-1 and K of A. */
 
- 	    i__1 = k - 2;
 
- 	    dger_(&i__1, nrhs, &c_b7, &ap[kc], &c__1, &b[k + b_dim1], ldb, &b[
 
- 		    b_dim1 + 1], ldb);
 
- 	    i__1 = k - 2;
 
- 	    dger_(&i__1, nrhs, &c_b7, &ap[kc - (k - 1)], &c__1, &b[k - 1 + 
 
- 		    b_dim1], ldb, &b[b_dim1 + 1], ldb);
 
- /*           Multiply by the inverse of the diagonal block. */
 
- 	    akm1k = ap[kc + k - 2];
 
- 	    akm1 = ap[kc - 1] / akm1k;
 
- 	    ak = ap[kc + k - 1] / akm1k;
 
- 	    denom = akm1 * ak - 1.;
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		bkm1 = b[k - 1 + j * b_dim1] / akm1k;
 
- 		bk = b[k + j * b_dim1] / akm1k;
 
- 		b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom;
 
- 		b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom;
 
- /* L20: */
 
- 	    }
 
- 	    kc = kc - k + 1;
 
- 	    k += -2;
 
- 	}
 
- 	goto L10;
 
- L30:
 
- /*        Next solve U'*X = B, overwriting B with X. */
 
- /*        K is the main loop index, increasing from 1 to N in steps of */
 
- /*        1 or 2, depending on the size of the diagonal blocks. */
 
- 	k = 1;
 
- 	kc = 1;
 
- L40:
 
- /*        If K > N, exit from loop. */
 
- 	if (k > *n) {
 
- 	    goto L50;
 
- 	}
 
- 	if (ipiv[k] > 0) {
 
- /*           1 x 1 diagonal block */
 
- /*           Multiply by inv(U'(K)), where U(K) is the transformation */
 
- /*           stored in column K of A. */
 
- 	    i__1 = k - 1;
 
- 	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc]
 
- , &c__1, &c_b19, &b[k + b_dim1], ldb);
 
- /*           Interchange rows K and IPIV(K). */
 
- 	    kp = ipiv[k];
 
- 	    if (kp != k) {
 
- 		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- 	    kc += k;
 
- 	    ++k;
 
- 	} else {
 
- /*           2 x 2 diagonal block */
 
- /*           Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
 
- /*           stored in columns K and K+1 of A. */
 
- 	    i__1 = k - 1;
 
- 	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc]
 
- , &c__1, &c_b19, &b[k + b_dim1], ldb);
 
- 	    i__1 = k - 1;
 
- 	    dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &ap[kc 
 
- 		    + k], &c__1, &c_b19, &b[k + 1 + b_dim1], ldb);
 
- /*           Interchange rows K and -IPIV(K). */
 
- 	    kp = -ipiv[k];
 
- 	    if (kp != k) {
 
- 		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- 	    kc = kc + (k << 1) + 1;
 
- 	    k += 2;
 
- 	}
 
- 	goto L40;
 
- L50:
 
- 	;
 
-     } else {
 
- /*        Solve A*X = B, where A = L*D*L'. */
 
- /*        First solve L*D*X = B, overwriting B with X. */
 
- /*        K is the main loop index, increasing from 1 to N in steps of */
 
- /*        1 or 2, depending on the size of the diagonal blocks. */
 
- 	k = 1;
 
- 	kc = 1;
 
- L60:
 
- /*        If K > N, exit from loop. */
 
- 	if (k > *n) {
 
- 	    goto L80;
 
- 	}
 
- 	if (ipiv[k] > 0) {
 
- /*           1 x 1 diagonal block */
 
- /*           Interchange rows K and IPIV(K). */
 
- 	    kp = ipiv[k];
 
- 	    if (kp != k) {
 
- 		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- /*           Multiply by inv(L(K)), where L(K) is the transformation */
 
- /*           stored in column K of A. */
 
- 	    if (k < *n) {
 
- 		i__1 = *n - k;
 
- 		dger_(&i__1, nrhs, &c_b7, &ap[kc + 1], &c__1, &b[k + b_dim1], 
 
- 			ldb, &b[k + 1 + b_dim1], ldb);
 
- 	    }
 
- /*           Multiply by the inverse of the diagonal block. */
 
- 	    d__1 = 1. / ap[kc];
 
- 	    dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
 
- 	    kc = kc + *n - k + 1;
 
- 	    ++k;
 
- 	} else {
 
- /*           2 x 2 diagonal block */
 
- /*           Interchange rows K+1 and -IPIV(K). */
 
- 	    kp = -ipiv[k];
 
- 	    if (kp != k + 1) {
 
- 		dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- /*           Multiply by inv(L(K)), where L(K) is the transformation */
 
- /*           stored in columns K and K+1 of A. */
 
- 	    if (k < *n - 1) {
 
- 		i__1 = *n - k - 1;
 
- 		dger_(&i__1, nrhs, &c_b7, &ap[kc + 2], &c__1, &b[k + b_dim1], 
 
- 			ldb, &b[k + 2 + b_dim1], ldb);
 
- 		i__1 = *n - k - 1;
 
- 		dger_(&i__1, nrhs, &c_b7, &ap[kc + *n - k + 2], &c__1, &b[k + 
 
- 			1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
 
- 	    }
 
- /*           Multiply by the inverse of the diagonal block. */
 
- 	    akm1k = ap[kc + 1];
 
- 	    akm1 = ap[kc] / akm1k;
 
- 	    ak = ap[kc + *n - k + 1] / akm1k;
 
- 	    denom = akm1 * ak - 1.;
 
- 	    i__1 = *nrhs;
 
- 	    for (j = 1; j <= i__1; ++j) {
 
- 		bkm1 = b[k + j * b_dim1] / akm1k;
 
- 		bk = b[k + 1 + j * b_dim1] / akm1k;
 
- 		b[k + j * b_dim1] = (ak * bkm1 - bk) / denom;
 
- 		b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom;
 
- /* L70: */
 
- 	    }
 
- 	    kc = kc + (*n - k << 1) + 1;
 
- 	    k += 2;
 
- 	}
 
- 	goto L60;
 
- L80:
 
- /*        Next solve L'*X = B, overwriting B with X. */
 
- /*        K is the main loop index, decreasing from N to 1 in steps of */
 
- /*        1 or 2, depending on the size of the diagonal blocks. */
 
- 	k = *n;
 
- 	kc = *n * (*n + 1) / 2 + 1;
 
- L90:
 
- /*        If K < 1, exit from loop. */
 
- 	if (k < 1) {
 
- 	    goto L100;
 
- 	}
 
- 	kc -= *n - k + 1;
 
- 	if (ipiv[k] > 0) {
 
- /*           1 x 1 diagonal block */
 
- /*           Multiply by inv(L'(K)), where L(K) is the transformation */
 
- /*           stored in column K of A. */
 
- 	    if (k < *n) {
 
- 		i__1 = *n - k;
 
- 		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 
 
- 			ldb, &ap[kc + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
 
- 	    }
 
- /*           Interchange rows K and IPIV(K). */
 
- 	    kp = ipiv[k];
 
- 	    if (kp != k) {
 
- 		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- 	    --k;
 
- 	} else {
 
- /*           2 x 2 diagonal block */
 
- /*           Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
 
- /*           stored in columns K-1 and K of A. */
 
- 	    if (k < *n) {
 
- 		i__1 = *n - k;
 
- 		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 
 
- 			ldb, &ap[kc + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
 
- 		i__1 = *n - k;
 
- 		dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], 
 
- 			ldb, &ap[kc - (*n - k)], &c__1, &c_b19, &b[k - 1 + 
 
- 			b_dim1], ldb);
 
- 	    }
 
- /*           Interchange rows K and -IPIV(K). */
 
- 	    kp = -ipiv[k];
 
- 	    if (kp != k) {
 
- 		dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
 
- 	    }
 
- 	    kc -= *n - k + 2;
 
- 	    k += -2;
 
- 	}
 
- 	goto L90;
 
- L100:
 
- 	;
 
-     }
 
-     return 0;
 
- /*     End of DSPTRS */
 
- } /* dsptrs_ */
 
 
  |