| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285 | /* dspgst.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b9 = -1.;static doublereal c_b11 = 1.;/* Subroutine */ int dspgst_(integer *itype, char *uplo, integer *n, 	doublereal *ap, doublereal *bp, integer *info){    /* System generated locals */    integer i__1, i__2;    doublereal d__1;    /* Local variables */    integer j, k, j1, k1, jj, kk;    doublereal ct, ajj;    integer j1j1;    doublereal akk;    integer k1k1;    doublereal bjj, bkk;    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 	    integer *);    extern /* Subroutine */ int dspr2_(char *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *), dscal_(integer *, doublereal *, doublereal *, integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 	    integer *, doublereal *, integer *), dspmv_(char *, integer *, 	    doublereal *, doublereal *, doublereal *, integer *, doublereal *, 	     doublereal *, integer *);    logical upper;    extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, 	    doublereal *, doublereal *, integer *), 	    dtpsv_(char *, char *, char *, integer *, doublereal *, 	    doublereal *, integer *), xerbla_(char *, 	    integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DSPGST reduces a real symmetric-definite generalized eigenproblem *//*  to standard form, using packed storage. *//*  If ITYPE = 1, the problem is A*x = lambda*B*x, *//*  and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T) *//*  If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or *//*  B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L. *//*  B must have been previously factorized as U**T*U or L*L**T by DPPTRF. *//*  Arguments *//*  ========= *//*  ITYPE   (input) INTEGER *//*          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T); *//*          = 2 or 3: compute U*A*U**T or L**T*A*L. *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored and B is factored as *//*                  U**T*U; *//*          = 'L':  Lower triangle of A is stored and B is factored as *//*                  L*L**T. *//*  N       (input) INTEGER *//*          The order of the matrices A and B.  N >= 0. *//*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          On entry, the upper or lower triangle of the symmetric matrix *//*          A, packed columnwise in a linear array.  The j-th column of A *//*          is stored in the array AP as follows: *//*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; *//*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. *//*          On exit, if INFO = 0, the transformed matrix, stored in the *//*          same format as A. *//*  BP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) *//*          The triangular factor from the Cholesky factorization of B, *//*          stored in the same format as A, as returned by DPPTRF. *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --bp;    --ap;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (*itype < 1 || *itype > 3) {	*info = -1;    } else if (! upper && ! lsame_(uplo, "L")) {	*info = -2;    } else if (*n < 0) {	*info = -3;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DSPGST", &i__1);	return 0;    }    if (*itype == 1) {	if (upper) {/*           Compute inv(U')*A*inv(U) *//*           J1 and JJ are the indices of A(1,j) and A(j,j) */	    jj = 0;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		j1 = jj + 1;		jj += j;/*              Compute the j-th column of the upper triangle of A */		bjj = bp[jj];		dtpsv_(uplo, "Transpose", "Nonunit", &j, &bp[1], &ap[j1], &			c__1);		i__2 = j - 1;		dspmv_(uplo, &i__2, &c_b9, &ap[1], &bp[j1], &c__1, &c_b11, &			ap[j1], &c__1);		i__2 = j - 1;		d__1 = 1. / bjj;		dscal_(&i__2, &d__1, &ap[j1], &c__1);		i__2 = j - 1;		ap[jj] = (ap[jj] - ddot_(&i__2, &ap[j1], &c__1, &bp[j1], &			c__1)) / bjj;/* L10: */	    }	} else {/*           Compute inv(L)*A*inv(L') *//*           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1) */	    kk = 1;	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {		k1k1 = kk + *n - k + 1;/*              Update the lower triangle of A(k:n,k:n) */		akk = ap[kk];		bkk = bp[kk];/* Computing 2nd power */		d__1 = bkk;		akk /= d__1 * d__1;		ap[kk] = akk;		if (k < *n) {		    i__2 = *n - k;		    d__1 = 1. / bkk;		    dscal_(&i__2, &d__1, &ap[kk + 1], &c__1);		    ct = akk * -.5;		    i__2 = *n - k;		    daxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1)			    ;		    i__2 = *n - k;		    dspr2_(uplo, &i__2, &c_b9, &ap[kk + 1], &c__1, &bp[kk + 1], &c__1, &ap[k1k1]);		    i__2 = *n - k;		    daxpy_(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1)			    ;		    i__2 = *n - k;		    dtpsv_(uplo, "No transpose", "Non-unit", &i__2, &bp[k1k1], 			     &ap[kk + 1], &c__1);		}		kk = k1k1;/* L20: */	    }	}    } else {	if (upper) {/*           Compute U*A*U' *//*           K1 and KK are the indices of A(1,k) and A(k,k) */	    kk = 0;	    i__1 = *n;	    for (k = 1; k <= i__1; ++k) {		k1 = kk + 1;		kk += k;/*              Update the upper triangle of A(1:k,1:k) */		akk = ap[kk];		bkk = bp[kk];		i__2 = k - 1;		dtpmv_(uplo, "No transpose", "Non-unit", &i__2, &bp[1], &ap[			k1], &c__1);		ct = akk * .5;		i__2 = k - 1;		daxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1);		i__2 = k - 1;		dspr2_(uplo, &i__2, &c_b11, &ap[k1], &c__1, &bp[k1], &c__1, &			ap[1]);		i__2 = k - 1;		daxpy_(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1);		i__2 = k - 1;		dscal_(&i__2, &bkk, &ap[k1], &c__1);/* Computing 2nd power */		d__1 = bkk;		ap[kk] = akk * (d__1 * d__1);/* L30: */	    }	} else {/*           Compute L'*A*L *//*           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1) */	    jj = 1;	    i__1 = *n;	    for (j = 1; j <= i__1; ++j) {		j1j1 = jj + *n - j + 1;/*              Compute the j-th column of the lower triangle of A */		ajj = ap[jj];		bjj = bp[jj];		i__2 = *n - j;		ap[jj] = ajj * bjj + ddot_(&i__2, &ap[jj + 1], &c__1, &bp[jj 			+ 1], &c__1);		i__2 = *n - j;		dscal_(&i__2, &bjj, &ap[jj + 1], &c__1);		i__2 = *n - j;		dspmv_(uplo, &i__2, &c_b11, &ap[j1j1], &bp[jj + 1], &c__1, &			c_b11, &ap[jj + 1], &c__1);		i__2 = *n - j + 1;		dtpmv_(uplo, "Transpose", "Non-unit", &i__2, &bp[jj], &ap[jj], 			 &c__1);		jj = j1j1;/* L40: */	    }	}    }    return 0;/*     End of DSPGST */} /* dspgst_ */
 |