| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 | 
							- /* dptrfs.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static doublereal c_b11 = 1.;
 
- /* Subroutine */ int dptrfs_(integer *n, integer *nrhs, doublereal *d__, 
 
- 	doublereal *e, doublereal *df, doublereal *ef, doublereal *b, integer 
 
- 	*ldb, doublereal *x, integer *ldx, doublereal *ferr, doublereal *berr, 
 
- 	 doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2;
 
-     doublereal d__1, d__2, d__3;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     doublereal s, bi, cx, dx, ex;
 
-     integer ix, nz;
 
-     doublereal eps, safe1, safe2;
 
-     extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *, 
 
- 	    integer *, doublereal *, integer *);
 
-     integer count;
 
-     extern doublereal dlamch_(char *);
 
-     extern integer idamax_(integer *, doublereal *, integer *);
 
-     doublereal safmin;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
-     doublereal lstres;
 
-     extern /* Subroutine */ int dpttrs_(integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, integer *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DPTRFS improves the computed solution to a system of linear */
 
- /*  equations when the coefficient matrix is symmetric positive definite */
 
- /*  and tridiagonal, and provides error bounds and backward error */
 
- /*  estimates for the solution. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A.  N >= 0. */
 
- /*  NRHS    (input) INTEGER */
 
- /*          The number of right hand sides, i.e., the number of columns */
 
- /*          of the matrix B.  NRHS >= 0. */
 
- /*  D       (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The n diagonal elements of the tridiagonal matrix A. */
 
- /*  E       (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) subdiagonal elements of the tridiagonal matrix A. */
 
- /*  DF      (input) DOUBLE PRECISION array, dimension (N) */
 
- /*          The n diagonal elements of the diagonal matrix D from the */
 
- /*          factorization computed by DPTTRF. */
 
- /*  EF      (input) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          The (n-1) subdiagonal elements of the unit bidiagonal factor */
 
- /*          L from the factorization computed by DPTTRF. */
 
- /*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
 
- /*          The right hand side matrix B. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B.  LDB >= max(1,N). */
 
- /*  X       (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
 
- /*          On entry, the solution matrix X, as computed by DPTTRS. */
 
- /*          On exit, the improved solution matrix X. */
 
- /*  LDX     (input) INTEGER */
 
- /*          The leading dimension of the array X.  LDX >= max(1,N). */
 
- /*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The forward error bound for each solution vector */
 
- /*          X(j) (the j-th column of the solution matrix X). */
 
- /*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 
- /*          is an estimated upper bound for the magnitude of the largest */
 
- /*          element in (X(j) - XTRUE) divided by the magnitude of the */
 
- /*          largest element in X(j). */
 
- /*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
 
- /*          The componentwise relative backward error of each solution */
 
- /*          vector X(j) (i.e., the smallest relative change in */
 
- /*          any element of A or B that makes X(j) an exact solution). */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*N) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 
- /*  Internal Parameters */
 
- /*  =================== */
 
- /*  ITMAX is the maximum number of steps of iterative refinement. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --e;
 
-     --df;
 
-     --ef;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     x_dim1 = *ldx;
 
-     x_offset = 1 + x_dim1;
 
-     x -= x_offset;
 
-     --ferr;
 
-     --berr;
 
-     --work;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
-     } else if (*nrhs < 0) {
 
- 	*info = -2;
 
-     } else if (*ldb < max(1,*n)) {
 
- 	*info = -8;
 
-     } else if (*ldx < max(1,*n)) {
 
- 	*info = -10;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DPTRFS", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0 || *nrhs == 0) {
 
- 	i__1 = *nrhs;
 
- 	for (j = 1; j <= i__1; ++j) {
 
- 	    ferr[j] = 0.;
 
- 	    berr[j] = 0.;
 
- /* L10: */
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     NZ = maximum number of nonzero elements in each row of A, plus 1 */
 
-     nz = 4;
 
-     eps = dlamch_("Epsilon");
 
-     safmin = dlamch_("Safe minimum");
 
-     safe1 = nz * safmin;
 
-     safe2 = safe1 / eps;
 
- /*     Do for each right hand side */
 
-     i__1 = *nrhs;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	count = 1;
 
- 	lstres = 3.;
 
- L20:
 
- /*        Loop until stopping criterion is satisfied. */
 
- /*        Compute residual R = B - A * X.  Also compute */
 
- /*        abs(A)*abs(x) + abs(b) for use in the backward error bound. */
 
- 	if (*n == 1) {
 
- 	    bi = b[j * b_dim1 + 1];
 
- 	    dx = d__[1] * x[j * x_dim1 + 1];
 
- 	    work[*n + 1] = bi - dx;
 
- 	    work[1] = abs(bi) + abs(dx);
 
- 	} else {
 
- 	    bi = b[j * b_dim1 + 1];
 
- 	    dx = d__[1] * x[j * x_dim1 + 1];
 
- 	    ex = e[1] * x[j * x_dim1 + 2];
 
- 	    work[*n + 1] = bi - dx - ex;
 
- 	    work[1] = abs(bi) + abs(dx) + abs(ex);
 
- 	    i__2 = *n - 1;
 
- 	    for (i__ = 2; i__ <= i__2; ++i__) {
 
- 		bi = b[i__ + j * b_dim1];
 
- 		cx = e[i__ - 1] * x[i__ - 1 + j * x_dim1];
 
- 		dx = d__[i__] * x[i__ + j * x_dim1];
 
- 		ex = e[i__] * x[i__ + 1 + j * x_dim1];
 
- 		work[*n + i__] = bi - cx - dx - ex;
 
- 		work[i__] = abs(bi) + abs(cx) + abs(dx) + abs(ex);
 
- /* L30: */
 
- 	    }
 
- 	    bi = b[*n + j * b_dim1];
 
- 	    cx = e[*n - 1] * x[*n - 1 + j * x_dim1];
 
- 	    dx = d__[*n] * x[*n + j * x_dim1];
 
- 	    work[*n + *n] = bi - cx - dx;
 
- 	    work[*n] = abs(bi) + abs(cx) + abs(dx);
 
- 	}
 
- /*        Compute componentwise relative backward error from formula */
 
- /*        max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
 
- /*        where abs(Z) is the componentwise absolute value of the matrix */
 
- /*        or vector Z.  If the i-th component of the denominator is less */
 
- /*        than SAFE2, then SAFE1 is added to the i-th components of the */
 
- /*        numerator and denominator before dividing. */
 
- 	s = 0.;
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    if (work[i__] > safe2) {
 
- /* Computing MAX */
 
- 		d__2 = s, d__3 = (d__1 = work[*n + i__], abs(d__1)) / work[
 
- 			i__];
 
- 		s = max(d__2,d__3);
 
- 	    } else {
 
- /* Computing MAX */
 
- 		d__2 = s, d__3 = ((d__1 = work[*n + i__], abs(d__1)) + safe1) 
 
- 			/ (work[i__] + safe1);
 
- 		s = max(d__2,d__3);
 
- 	    }
 
- /* L40: */
 
- 	}
 
- 	berr[j] = s;
 
- /*        Test stopping criterion. Continue iterating if */
 
- /*           1) The residual BERR(J) is larger than machine epsilon, and */
 
- /*           2) BERR(J) decreased by at least a factor of 2 during the */
 
- /*              last iteration, and */
 
- /*           3) At most ITMAX iterations tried. */
 
- 	if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
 
- /*           Update solution and try again. */
 
- 	    dpttrs_(n, &c__1, &df[1], &ef[1], &work[*n + 1], n, info);
 
- 	    daxpy_(n, &c_b11, &work[*n + 1], &c__1, &x[j * x_dim1 + 1], &c__1)
 
- 		    ;
 
- 	    lstres = berr[j];
 
- 	    ++count;
 
- 	    goto L20;
 
- 	}
 
- /*        Bound error from formula */
 
- /*        norm(X - XTRUE) / norm(X) .le. FERR = */
 
- /*        norm( abs(inv(A))* */
 
- /*           ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
 
- /*        where */
 
- /*          norm(Z) is the magnitude of the largest component of Z */
 
- /*          inv(A) is the inverse of A */
 
- /*          abs(Z) is the componentwise absolute value of the matrix or */
 
- /*             vector Z */
 
- /*          NZ is the maximum number of nonzeros in any row of A, plus 1 */
 
- /*          EPS is machine epsilon */
 
- /*        The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
 
- /*        is incremented by SAFE1 if the i-th component of */
 
- /*        abs(A)*abs(X) + abs(B) is less than SAFE2. */
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- 	    if (work[i__] > safe2) {
 
- 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 
- 			work[i__];
 
- 	    } else {
 
- 		work[i__] = (d__1 = work[*n + i__], abs(d__1)) + nz * eps * 
 
- 			work[i__] + safe1;
 
- 	    }
 
- /* L50: */
 
- 	}
 
- 	ix = idamax_(n, &work[1], &c__1);
 
- 	ferr[j] = work[ix];
 
- /*        Estimate the norm of inv(A). */
 
- /*        Solve M(A) * x = e, where M(A) = (m(i,j)) is given by */
 
- /*           m(i,j) =  abs(A(i,j)), i = j, */
 
- /*           m(i,j) = -abs(A(i,j)), i .ne. j, */
 
- /*        and e = [ 1, 1, ..., 1 ]'.  Note M(A) = M(L)*D*M(L)'. */
 
- /*        Solve M(L) * x = e. */
 
- 	work[1] = 1.;
 
- 	i__2 = *n;
 
- 	for (i__ = 2; i__ <= i__2; ++i__) {
 
- 	    work[i__] = work[i__ - 1] * (d__1 = ef[i__ - 1], abs(d__1)) + 1.;
 
- /* L60: */
 
- 	}
 
- /*        Solve D * M(L)' * x = b. */
 
- 	work[*n] /= df[*n];
 
- 	for (i__ = *n - 1; i__ >= 1; --i__) {
 
- 	    work[i__] = work[i__] / df[i__] + work[i__ + 1] * (d__1 = ef[i__],
 
- 		     abs(d__1));
 
- /* L70: */
 
- 	}
 
- /*        Compute norm(inv(A)) = max(x(i)), 1<=i<=n. */
 
- 	ix = idamax_(n, &work[1], &c__1);
 
- 	ferr[j] *= (d__1 = work[ix], abs(d__1));
 
- /*        Normalize error. */
 
- 	lstres = 0.;
 
- 	i__2 = *n;
 
- 	for (i__ = 1; i__ <= i__2; ++i__) {
 
- /* Computing MAX */
 
- 	    d__2 = lstres, d__3 = (d__1 = x[i__ + j * x_dim1], abs(d__1));
 
- 	    lstres = max(d__2,d__3);
 
- /* L80: */
 
- 	}
 
- 	if (lstres != 0.) {
 
- 	    ferr[j] /= lstres;
 
- 	}
 
- /* L90: */
 
-     }
 
-     return 0;
 
- /*     End of DPTRFS */
 
- } /* dptrfs_ */
 
 
  |