| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396 | /* dpstf2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static integer c__1 = 1;static doublereal c_b16 = -1.;static doublereal c_b18 = 1.;/* Subroutine */ int dpstf2_(char *uplo, integer *n, doublereal *a, integer *	lda, integer *piv, integer *rank, doublereal *tol, doublereal *work, 	integer *info){    /* System generated locals */    integer a_dim1, a_offset, i__1, i__2, i__3;    doublereal d__1;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    integer i__, j, maxlocval;    doublereal ajj;    integer pvt;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *);    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dgemv_(char *, integer *, integer *, 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 	    doublereal *, doublereal *, integer *);    doublereal dtemp;    integer itemp;    extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *, 	    doublereal *, integer *);    doublereal dstop;    logical upper;    extern doublereal dlamch_(char *);    extern logical disnan_(doublereal *);    extern /* Subroutine */ int xerbla_(char *, integer *);    extern integer dmaxloc_(doublereal *, integer *);/*  -- LAPACK PROTOTYPE routine (version 3.2) -- *//*     Craig Lucas, University of Manchester / NAG Ltd. *//*     October, 2008 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPSTF2 computes the Cholesky factorization with complete *//*  pivoting of a real symmetric positive semidefinite matrix A. *//*  The factorization has the form *//*     P' * A * P = U' * U ,  if UPLO = 'U', *//*     P' * A * P = L  * L',  if UPLO = 'L', *//*  where U is an upper triangular matrix and L is lower triangular, and *//*  P is stored as vector PIV. *//*  This algorithm does not attempt to check that A is positive *//*  semidefinite. This version of the algorithm calls level 2 BLAS. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          Specifies whether the upper or lower triangular part of the *//*          symmetric matrix A is stored. *//*          = 'U':  Upper triangular *//*          = 'L':  Lower triangular *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading *//*          n by n upper triangular part of A contains the upper *//*          triangular part of the matrix A, and the strictly lower *//*          triangular part of A is not referenced.  If UPLO = 'L', the *//*          leading n by n lower triangular part of A contains the lower *//*          triangular part of the matrix A, and the strictly upper *//*          triangular part of A is not referenced. *//*          On exit, if INFO = 0, the factor U or L from the Cholesky *//*          factorization as above. *//*  PIV     (output) INTEGER array, dimension (N) *//*          PIV is such that the nonzero entries are P( PIV(K), K ) = 1. *//*  RANK    (output) INTEGER *//*          The rank of A given by the number of steps the algorithm *//*          completed. *//*  TOL     (input) DOUBLE PRECISION *//*          User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) ) *//*          will be used. The algorithm terminates at the (K-1)st step *//*          if the pivot <= TOL. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  WORK    DOUBLE PRECISION array, dimension (2*N) *//*          Work space. *//*  INFO    (output) INTEGER *//*          < 0: If INFO = -K, the K-th argument had an illegal value, *//*          = 0: algorithm completed successfully, and *//*          > 0: the matrix A is either rank deficient with computed rank *//*               as returned in RANK, or is indefinite.  See Section 7 of *//*               LAPACK Working Note #161 for further information. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters */    /* Parameter adjustments */    --work;    --piv;    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*lda < max(1,*n)) {	*info = -4;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPSTF2", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }/*     Initialize PIV */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	piv[i__] = i__;/* L100: */    }/*     Compute stopping value */    pvt = 1;    ajj = a[pvt + pvt * a_dim1];    i__1 = *n;    for (i__ = 2; i__ <= i__1; ++i__) {	if (a[i__ + i__ * a_dim1] > ajj) {	    pvt = i__;	    ajj = a[pvt + pvt * a_dim1];	}    }    if (ajj == 0. || disnan_(&ajj)) {	*rank = 0;	*info = 1;	goto L170;    }/*     Compute stopping value if not supplied */    if (*tol < 0.) {	dstop = *n * dlamch_("Epsilon") * ajj;    } else {	dstop = *tol;    }/*     Set first half of WORK to zero, holds dot products */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	work[i__] = 0.;/* L110: */    }    if (upper) {/*        Compute the Cholesky factorization P' * A * P = U' * U */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/*        Find pivot, test for exit, else swap rows and columns *//*        Update dot products, compute possible pivots which are *//*        stored in the second half of WORK */	    i__2 = *n;	    for (i__ = j; i__ <= i__2; ++i__) {		if (j > 1) {/* Computing 2nd power */		    d__1 = a[j - 1 + i__ * a_dim1];		    work[i__] += d__1 * d__1;		}		work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];/* L120: */	    }	    if (j > 1) {		maxlocval = (*n << 1) - (*n + j) + 1;		itemp = dmaxloc_(&work[*n + j], &maxlocval);		pvt = itemp + j - 1;		ajj = work[*n + pvt];		if (ajj <= dstop || disnan_(&ajj)) {		    a[j + j * a_dim1] = ajj;		    goto L160;		}	    }	    if (j != pvt) {/*              Pivot OK, so can now swap pivot rows and columns */		a[pvt + pvt * a_dim1] = a[j + j * a_dim1];		i__2 = j - 1;		dswap_(&i__2, &a[j * a_dim1 + 1], &c__1, &a[pvt * a_dim1 + 1], 			 &c__1);		if (pvt < *n) {		    i__2 = *n - pvt;		    dswap_(&i__2, &a[j + (pvt + 1) * a_dim1], lda, &a[pvt + (			    pvt + 1) * a_dim1], lda);		}		i__2 = pvt - j - 1;		dswap_(&i__2, &a[j + (j + 1) * a_dim1], lda, &a[j + 1 + pvt * 			a_dim1], &c__1);/*              Swap dot products and PIV */		dtemp = work[j];		work[j] = work[pvt];		work[pvt] = dtemp;		itemp = piv[pvt];		piv[pvt] = piv[j];		piv[j] = itemp;	    }	    ajj = sqrt(ajj);	    a[j + j * a_dim1] = ajj;/*           Compute elements J+1:N of row J */	    if (j < *n) {		i__2 = j - 1;		i__3 = *n - j;		dgemv_("Trans", &i__2, &i__3, &c_b16, &a[(j + 1) * a_dim1 + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b18, &a[j + (j + 			1) * a_dim1], lda);		i__2 = *n - j;		d__1 = 1. / ajj;		dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);	    }/* L130: */	}    } else {/*        Compute the Cholesky factorization P' * A * P = L * L' */	i__1 = *n;	for (j = 1; j <= i__1; ++j) {/*        Find pivot, test for exit, else swap rows and columns *//*        Update dot products, compute possible pivots which are *//*        stored in the second half of WORK */	    i__2 = *n;	    for (i__ = j; i__ <= i__2; ++i__) {		if (j > 1) {/* Computing 2nd power */		    d__1 = a[i__ + (j - 1) * a_dim1];		    work[i__] += d__1 * d__1;		}		work[*n + i__] = a[i__ + i__ * a_dim1] - work[i__];/* L140: */	    }	    if (j > 1) {		maxlocval = (*n << 1) - (*n + j) + 1;		itemp = dmaxloc_(&work[*n + j], &maxlocval);		pvt = itemp + j - 1;		ajj = work[*n + pvt];		if (ajj <= dstop || disnan_(&ajj)) {		    a[j + j * a_dim1] = ajj;		    goto L160;		}	    }	    if (j != pvt) {/*              Pivot OK, so can now swap pivot rows and columns */		a[pvt + pvt * a_dim1] = a[j + j * a_dim1];		i__2 = j - 1;		dswap_(&i__2, &a[j + a_dim1], lda, &a[pvt + a_dim1], lda);		if (pvt < *n) {		    i__2 = *n - pvt;		    dswap_(&i__2, &a[pvt + 1 + j * a_dim1], &c__1, &a[pvt + 1 			    + pvt * a_dim1], &c__1);		}		i__2 = pvt - j - 1;		dswap_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &a[pvt + (j + 1) 			* a_dim1], lda);/*              Swap dot products and PIV */		dtemp = work[j];		work[j] = work[pvt];		work[pvt] = dtemp;		itemp = piv[pvt];		piv[pvt] = piv[j];		piv[j] = itemp;	    }	    ajj = sqrt(ajj);	    a[j + j * a_dim1] = ajj;/*           Compute elements J+1:N of column J */	    if (j < *n) {		i__2 = *n - j;		i__3 = j - 1;		dgemv_("No Trans", &i__2, &i__3, &c_b16, &a[j + 1 + a_dim1], 			lda, &a[j + a_dim1], lda, &c_b18, &a[j + 1 + j * 			a_dim1], &c__1);		i__2 = *n - j;		d__1 = 1. / ajj;		dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);	    }/* L150: */	}    }/*     Ran to completion, A has full rank */    *rank = *n;    goto L170;L160:/*     Rank is number of steps completed.  Set INFO = 1 to signal *//*     that the factorization cannot be used to solve a system. */    *rank = j - 1;    *info = 1;L170:    return 0;/*     End of DPSTF2 */} /* dpstf2_ */
 |