| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 | /* dpotrs.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b9 = 1.;/* Subroutine */ int dpotrs_(char *uplo, integer *n, integer *nrhs, 	doublereal *a, integer *lda, doublereal *b, integer *ldb, integer *	info){    /* System generated locals */    integer a_dim1, a_offset, b_dim1, b_offset, i__1;    /* Local variables */    extern logical lsame_(char *, char *);    extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, 	    integer *, integer *, doublereal *, doublereal *, integer *, 	    doublereal *, integer *);    logical upper;    extern /* Subroutine */ int xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DPOTRS solves a system of linear equations A*X = B with a symmetric *//*  positive definite matrix A using the Cholesky factorization *//*  A = U**T*U or A = L*L**T computed by DPOTRF. *//*  Arguments *//*  ========= *//*  UPLO    (input) CHARACTER*1 *//*          = 'U':  Upper triangle of A is stored; *//*          = 'L':  Lower triangle of A is stored. *//*  N       (input) INTEGER *//*          The order of the matrix A.  N >= 0. *//*  NRHS    (input) INTEGER *//*          The number of right hand sides, i.e., the number of columns *//*          of the matrix B.  NRHS >= 0. *//*  A       (input) DOUBLE PRECISION array, dimension (LDA,N) *//*          The triangular factor U or L from the Cholesky factorization *//*          A = U**T*U or A = L*L**T, as computed by DPOTRF. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,N). *//*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) *//*          On entry, the right hand side matrix B. *//*          On exit, the solution matrix X. *//*  LDB     (input) INTEGER *//*          The leading dimension of the array B.  LDB >= max(1,N). *//*  INFO    (output) INTEGER *//*          = 0:  successful exit *//*          < 0:  if INFO = -i, the i-th argument had an illegal value *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    b_dim1 = *ldb;    b_offset = 1 + b_dim1;    b -= b_offset;    /* Function Body */    *info = 0;    upper = lsame_(uplo, "U");    if (! upper && ! lsame_(uplo, "L")) {	*info = -1;    } else if (*n < 0) {	*info = -2;    } else if (*nrhs < 0) {	*info = -3;    } else if (*lda < max(1,*n)) {	*info = -5;    } else if (*ldb < max(1,*n)) {	*info = -7;    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DPOTRS", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0 || *nrhs == 0) {	return 0;    }    if (upper) {/*        Solve A*X = B where A = U'*U. *//*        Solve U'*X = B, overwriting B with X. */	dtrsm_("Left", "Upper", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[		a_offset], lda, &b[b_offset], ldb);/*        Solve U*X = B, overwriting B with X. */	dtrsm_("Left", "Upper", "No transpose", "Non-unit", n, nrhs, &c_b9, &		a[a_offset], lda, &b[b_offset], ldb);    } else {/*        Solve A*X = B where A = L*L'. *//*        Solve L*X = B, overwriting B with X. */	dtrsm_("Left", "Lower", "No transpose", "Non-unit", n, nrhs, &c_b9, &		a[a_offset], lda, &b[b_offset], ldb);/*        Solve L'*X = B, overwriting B with X. */	dtrsm_("Left", "Lower", "Transpose", "Non-unit", n, nrhs, &c_b9, &a[		a_offset], lda, &b[b_offset], ldb);    }    return 0;/*     End of DPOTRS */} /* dpotrs_ */
 |