| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519 | 
							- /* dlasd7.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- /* Subroutine */ int dlasd7_(integer *icompq, integer *nl, integer *nr, 
 
- 	integer *sqre, integer *k, doublereal *d__, doublereal *z__, 
 
- 	doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl, 
 
- 	doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *
 
- 	dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm, 
 
- 	integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum, 
 
- 	 integer *ldgnum, doublereal *c__, doublereal *s, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer i__, j, m, n, k2;
 
-     doublereal z1;
 
-     integer jp;
 
-     doublereal eps, tau, tol;
 
-     integer nlp1, nlp2, idxi, idxj;
 
-     extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *);
 
-     integer idxjp;
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer jprev;
 
-     extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
 
-     extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 
 
- 	    integer *, integer *, integer *), xerbla_(char *, integer *);
 
-     doublereal hlftol;
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASD7 merges the two sets of singular values together into a single */
 
- /*  sorted set. Then it tries to deflate the size of the problem. There */
 
- /*  are two ways in which deflation can occur:  when two or more singular */
 
- /*  values are close together or if there is a tiny entry in the Z */
 
- /*  vector. For each such occurrence the order of the related */
 
- /*  secular equation problem is reduced by one. */
 
- /*  DLASD7 is called from DLASD6. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  ICOMPQ  (input) INTEGER */
 
- /*          Specifies whether singular vectors are to be computed */
 
- /*          in compact form, as follows: */
 
- /*          = 0: Compute singular values only. */
 
- /*          = 1: Compute singular vectors of upper */
 
- /*               bidiagonal matrix in compact form. */
 
- /*  NL     (input) INTEGER */
 
- /*         The row dimension of the upper block. NL >= 1. */
 
- /*  NR     (input) INTEGER */
 
- /*         The row dimension of the lower block. NR >= 1. */
 
- /*  SQRE   (input) INTEGER */
 
- /*         = 0: the lower block is an NR-by-NR square matrix. */
 
- /*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 
- /*         The bidiagonal matrix has */
 
- /*         N = NL + NR + 1 rows and */
 
- /*         M = N + SQRE >= N columns. */
 
- /*  K      (output) INTEGER */
 
- /*         Contains the dimension of the non-deflated matrix, this is */
 
- /*         the order of the related secular equation. 1 <= K <=N. */
 
- /*  D      (input/output) DOUBLE PRECISION array, dimension ( N ) */
 
- /*         On entry D contains the singular values of the two submatrices */
 
- /*         to be combined. On exit D contains the trailing (N-K) updated */
 
- /*         singular values (those which were deflated) sorted into */
 
- /*         increasing order. */
 
- /*  Z      (output) DOUBLE PRECISION array, dimension ( M ) */
 
- /*         On exit Z contains the updating row vector in the secular */
 
- /*         equation. */
 
- /*  ZW     (workspace) DOUBLE PRECISION array, dimension ( M ) */
 
- /*         Workspace for Z. */
 
- /*  VF     (input/output) DOUBLE PRECISION array, dimension ( M ) */
 
- /*         On entry, VF(1:NL+1) contains the first components of all */
 
- /*         right singular vectors of the upper block; and VF(NL+2:M) */
 
- /*         contains the first components of all right singular vectors */
 
- /*         of the lower block. On exit, VF contains the first components */
 
- /*         of all right singular vectors of the bidiagonal matrix. */
 
- /*  VFW    (workspace) DOUBLE PRECISION array, dimension ( M ) */
 
- /*         Workspace for VF. */
 
- /*  VL     (input/output) DOUBLE PRECISION array, dimension ( M ) */
 
- /*         On entry, VL(1:NL+1) contains the  last components of all */
 
- /*         right singular vectors of the upper block; and VL(NL+2:M) */
 
- /*         contains the last components of all right singular vectors */
 
- /*         of the lower block. On exit, VL contains the last components */
 
- /*         of all right singular vectors of the bidiagonal matrix. */
 
- /*  VLW    (workspace) DOUBLE PRECISION array, dimension ( M ) */
 
- /*         Workspace for VL. */
 
- /*  ALPHA  (input) DOUBLE PRECISION */
 
- /*         Contains the diagonal element associated with the added row. */
 
- /*  BETA   (input) DOUBLE PRECISION */
 
- /*         Contains the off-diagonal element associated with the added */
 
- /*         row. */
 
- /*  DSIGMA (output) DOUBLE PRECISION array, dimension ( N ) */
 
- /*         Contains a copy of the diagonal elements (K-1 singular values */
 
- /*         and one zero) in the secular equation. */
 
- /*  IDX    (workspace) INTEGER array, dimension ( N ) */
 
- /*         This will contain the permutation used to sort the contents of */
 
- /*         D into ascending order. */
 
- /*  IDXP   (workspace) INTEGER array, dimension ( N ) */
 
- /*         This will contain the permutation used to place deflated */
 
- /*         values of D at the end of the array. On output IDXP(2:K) */
 
- /*         points to the nondeflated D-values and IDXP(K+1:N) */
 
- /*         points to the deflated singular values. */
 
- /*  IDXQ   (input) INTEGER array, dimension ( N ) */
 
- /*         This contains the permutation which separately sorts the two */
 
- /*         sub-problems in D into ascending order.  Note that entries in */
 
- /*         the first half of this permutation must first be moved one */
 
- /*         position backward; and entries in the second half */
 
- /*         must first have NL+1 added to their values. */
 
- /*  PERM   (output) INTEGER array, dimension ( N ) */
 
- /*         The permutations (from deflation and sorting) to be applied */
 
- /*         to each singular block. Not referenced if ICOMPQ = 0. */
 
- /*  GIVPTR (output) INTEGER */
 
- /*         The number of Givens rotations which took place in this */
 
- /*         subproblem. Not referenced if ICOMPQ = 0. */
 
- /*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */
 
- /*         Each pair of numbers indicates a pair of columns to take place */
 
- /*         in a Givens rotation. Not referenced if ICOMPQ = 0. */
 
- /*  LDGCOL (input) INTEGER */
 
- /*         The leading dimension of GIVCOL, must be at least N. */
 
- /*  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
 
- /*         Each number indicates the C or S value to be used in the */
 
- /*         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
 
- /*  LDGNUM (input) INTEGER */
 
- /*         The leading dimension of GIVNUM, must be at least N. */
 
- /*  C      (output) DOUBLE PRECISION */
 
- /*         C contains garbage if SQRE =0 and the C-value of a Givens */
 
- /*         rotation related to the right null space if SQRE = 1. */
 
- /*  S      (output) DOUBLE PRECISION */
 
- /*         S contains garbage if SQRE =0 and the S-value of a Givens */
 
- /*         rotation related to the right null space if SQRE = 1. */
 
- /*  INFO   (output) INTEGER */
 
- /*         = 0:  successful exit. */
 
- /*         < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     --z__;
 
-     --zw;
 
-     --vf;
 
-     --vfw;
 
-     --vl;
 
-     --vlw;
 
-     --dsigma;
 
-     --idx;
 
-     --idxp;
 
-     --idxq;
 
-     --perm;
 
-     givcol_dim1 = *ldgcol;
 
-     givcol_offset = 1 + givcol_dim1;
 
-     givcol -= givcol_offset;
 
-     givnum_dim1 = *ldgnum;
 
-     givnum_offset = 1 + givnum_dim1;
 
-     givnum -= givnum_offset;
 
-     /* Function Body */
 
-     *info = 0;
 
-     n = *nl + *nr + 1;
 
-     m = n + *sqre;
 
-     if (*icompq < 0 || *icompq > 1) {
 
- 	*info = -1;
 
-     } else if (*nl < 1) {
 
- 	*info = -2;
 
-     } else if (*nr < 1) {
 
- 	*info = -3;
 
-     } else if (*sqre < 0 || *sqre > 1) {
 
- 	*info = -4;
 
-     } else if (*ldgcol < n) {
 
- 	*info = -22;
 
-     } else if (*ldgnum < n) {
 
- 	*info = -24;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLASD7", &i__1);
 
- 	return 0;
 
-     }
 
-     nlp1 = *nl + 1;
 
-     nlp2 = *nl + 2;
 
-     if (*icompq == 1) {
 
- 	*givptr = 0;
 
-     }
 
- /*     Generate the first part of the vector Z and move the singular */
 
- /*     values in the first part of D one position backward. */
 
-     z1 = *alpha * vl[nlp1];
 
-     vl[nlp1] = 0.;
 
-     tau = vf[nlp1];
 
-     for (i__ = *nl; i__ >= 1; --i__) {
 
- 	z__[i__ + 1] = *alpha * vl[i__];
 
- 	vl[i__] = 0.;
 
- 	vf[i__ + 1] = vf[i__];
 
- 	d__[i__ + 1] = d__[i__];
 
- 	idxq[i__ + 1] = idxq[i__] + 1;
 
- /* L10: */
 
-     }
 
-     vf[1] = tau;
 
- /*     Generate the second part of the vector Z. */
 
-     i__1 = m;
 
-     for (i__ = nlp2; i__ <= i__1; ++i__) {
 
- 	z__[i__] = *beta * vf[i__];
 
- 	vf[i__] = 0.;
 
- /* L20: */
 
-     }
 
- /*     Sort the singular values into increasing order */
 
-     i__1 = n;
 
-     for (i__ = nlp2; i__ <= i__1; ++i__) {
 
- 	idxq[i__] += nlp1;
 
- /* L30: */
 
-     }
 
- /*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
 
-     i__1 = n;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	dsigma[i__] = d__[idxq[i__]];
 
- 	zw[i__] = z__[idxq[i__]];
 
- 	vfw[i__] = vf[idxq[i__]];
 
- 	vlw[i__] = vl[idxq[i__]];
 
- /* L40: */
 
-     }
 
-     dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
 
-     i__1 = n;
 
-     for (i__ = 2; i__ <= i__1; ++i__) {
 
- 	idxi = idx[i__] + 1;
 
- 	d__[i__] = dsigma[idxi];
 
- 	z__[i__] = zw[idxi];
 
- 	vf[i__] = vfw[idxi];
 
- 	vl[i__] = vlw[idxi];
 
- /* L50: */
 
-     }
 
- /*     Calculate the allowable deflation tolerence */
 
-     eps = dlamch_("Epsilon");
 
- /* Computing MAX */
 
-     d__1 = abs(*alpha), d__2 = abs(*beta);
 
-     tol = max(d__1,d__2);
 
- /* Computing MAX */
 
-     d__2 = (d__1 = d__[n], abs(d__1));
 
-     tol = eps * 64. * max(d__2,tol);
 
- /*     There are 2 kinds of deflation -- first a value in the z-vector */
 
- /*     is small, second two (or more) singular values are very close */
 
- /*     together (their difference is small). */
 
- /*     If the value in the z-vector is small, we simply permute the */
 
- /*     array so that the corresponding singular value is moved to the */
 
- /*     end. */
 
- /*     If two values in the D-vector are close, we perform a two-sided */
 
- /*     rotation designed to make one of the corresponding z-vector */
 
- /*     entries zero, and then permute the array so that the deflated */
 
- /*     singular value is moved to the end. */
 
- /*     If there are multiple singular values then the problem deflates. */
 
- /*     Here the number of equal singular values are found.  As each equal */
 
- /*     singular value is found, an elementary reflector is computed to */
 
- /*     rotate the corresponding singular subspace so that the */
 
- /*     corresponding components of Z are zero in this new basis. */
 
-     *k = 1;
 
-     k2 = n + 1;
 
-     i__1 = n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	if ((d__1 = z__[j], abs(d__1)) <= tol) {
 
- /*           Deflate due to small z component. */
 
- 	    --k2;
 
- 	    idxp[k2] = j;
 
- 	    if (j == n) {
 
- 		goto L100;
 
- 	    }
 
- 	} else {
 
- 	    jprev = j;
 
- 	    goto L70;
 
- 	}
 
- /* L60: */
 
-     }
 
- L70:
 
-     j = jprev;
 
- L80:
 
-     ++j;
 
-     if (j > n) {
 
- 	goto L90;
 
-     }
 
-     if ((d__1 = z__[j], abs(d__1)) <= tol) {
 
- /*        Deflate due to small z component. */
 
- 	--k2;
 
- 	idxp[k2] = j;
 
-     } else {
 
- /*        Check if singular values are close enough to allow deflation. */
 
- 	if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
 
- /*           Deflation is possible. */
 
- 	    *s = z__[jprev];
 
- 	    *c__ = z__[j];
 
- /*           Find sqrt(a**2+b**2) without overflow or */
 
- /*           destructive underflow. */
 
- 	    tau = dlapy2_(c__, s);
 
- 	    z__[j] = tau;
 
- 	    z__[jprev] = 0.;
 
- 	    *c__ /= tau;
 
- 	    *s = -(*s) / tau;
 
- /*           Record the appropriate Givens rotation */
 
- 	    if (*icompq == 1) {
 
- 		++(*givptr);
 
- 		idxjp = idxq[idx[jprev] + 1];
 
- 		idxj = idxq[idx[j] + 1];
 
- 		if (idxjp <= nlp1) {
 
- 		    --idxjp;
 
- 		}
 
- 		if (idxj <= nlp1) {
 
- 		    --idxj;
 
- 		}
 
- 		givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
 
- 		givcol[*givptr + givcol_dim1] = idxj;
 
- 		givnum[*givptr + (givnum_dim1 << 1)] = *c__;
 
- 		givnum[*givptr + givnum_dim1] = *s;
 
- 	    }
 
- 	    drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
 
- 	    drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
 
- 	    --k2;
 
- 	    idxp[k2] = jprev;
 
- 	    jprev = j;
 
- 	} else {
 
- 	    ++(*k);
 
- 	    zw[*k] = z__[jprev];
 
- 	    dsigma[*k] = d__[jprev];
 
- 	    idxp[*k] = jprev;
 
- 	    jprev = j;
 
- 	}
 
-     }
 
-     goto L80;
 
- L90:
 
- /*     Record the last singular value. */
 
-     ++(*k);
 
-     zw[*k] = z__[jprev];
 
-     dsigma[*k] = d__[jprev];
 
-     idxp[*k] = jprev;
 
- L100:
 
- /*     Sort the singular values into DSIGMA. The singular values which */
 
- /*     were not deflated go into the first K slots of DSIGMA, except */
 
- /*     that DSIGMA(1) is treated separately. */
 
-     i__1 = n;
 
-     for (j = 2; j <= i__1; ++j) {
 
- 	jp = idxp[j];
 
- 	dsigma[j] = d__[jp];
 
- 	vfw[j] = vf[jp];
 
- 	vlw[j] = vl[jp];
 
- /* L110: */
 
-     }
 
-     if (*icompq == 1) {
 
- 	i__1 = n;
 
- 	for (j = 2; j <= i__1; ++j) {
 
- 	    jp = idxp[j];
 
- 	    perm[j] = idxq[idx[jp] + 1];
 
- 	    if (perm[j] <= nlp1) {
 
- 		--perm[j];
 
- 	    }
 
- /* L120: */
 
- 	}
 
-     }
 
- /*     The deflated singular values go back into the last N - K slots of */
 
- /*     D. */
 
-     i__1 = n - *k;
 
-     dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
 
- /*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
 
- /*     VL(M). */
 
-     dsigma[1] = 0.;
 
-     hlftol = tol / 2.;
 
-     if (abs(dsigma[2]) <= hlftol) {
 
- 	dsigma[2] = hlftol;
 
-     }
 
-     if (m > n) {
 
- 	z__[1] = dlapy2_(&z1, &z__[m]);
 
- 	if (z__[1] <= tol) {
 
- 	    *c__ = 1.;
 
- 	    *s = 0.;
 
- 	    z__[1] = tol;
 
- 	} else {
 
- 	    *c__ = z1 / z__[1];
 
- 	    *s = -z__[m] / z__[1];
 
- 	}
 
- 	drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
 
- 	drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
 
-     } else {
 
- 	if (abs(z1) <= tol) {
 
- 	    z__[1] = tol;
 
- 	} else {
 
- 	    z__[1] = z1;
 
- 	}
 
-     }
 
- /*     Restore Z, VF, and VL. */
 
-     i__1 = *k - 1;
 
-     dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
 
-     i__1 = n - 1;
 
-     dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
 
-     i__1 = n - 1;
 
-     dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
 
-     return 0;
 
- /*     End of DLASD7 */
 
- } /* dlasd7_ */
 
 
  |