| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453 | 
							- /* dlasd3.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static integer c__1 = 1;
 
- static integer c__0 = 0;
 
- static doublereal c_b13 = 1.;
 
- static doublereal c_b26 = 0.;
 
- /* Subroutine */ int dlasd3_(integer *nl, integer *nr, integer *sqre, integer 
 
- 	*k, doublereal *d__, doublereal *q, integer *ldq, doublereal *dsigma, 
 
- 	doublereal *u, integer *ldu, doublereal *u2, integer *ldu2, 
 
- 	doublereal *vt, integer *ldvt, doublereal *vt2, integer *ldvt2, 
 
- 	integer *idxc, integer *ctot, doublereal *z__, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, 
 
- 	    vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
 
-     doublereal d__1, d__2;
 
-     /* Builtin functions */
 
-     double sqrt(doublereal), d_sign(doublereal *, doublereal *);
 
-     /* Local variables */
 
-     integer i__, j, m, n, jc;
 
-     doublereal rho;
 
-     integer nlp1, nlp2, nrp1;
 
-     doublereal temp;
 
-     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 
-     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *);
 
-     integer ctemp;
 
-     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *);
 
-     integer ktemp;
 
-     extern doublereal dlamc3_(doublereal *, doublereal *);
 
-     extern /* Subroutine */ int dlasd4_(integer *, integer *, doublereal *, 
 
- 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 
- 	    doublereal *, integer *), dlascl_(char *, integer *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 
- 	    integer *, integer *), dlacpy_(char *, integer *, integer 
 
- 	    *, doublereal *, integer *, doublereal *, integer *), 
 
- 	    xerbla_(char *, integer *);
 
- /*  -- LAPACK auxiliary routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DLASD3 finds all the square roots of the roots of the secular */
 
- /*  equation, as defined by the values in D and Z.  It makes the */
 
- /*  appropriate calls to DLASD4 and then updates the singular */
 
- /*  vectors by matrix multiplication. */
 
- /*  This code makes very mild assumptions about floating point */
 
- /*  arithmetic. It will work on machines with a guard digit in */
 
- /*  add/subtract, or on those binary machines without guard digits */
 
- /*  which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
 
- /*  It could conceivably fail on hexadecimal or decimal machines */
 
- /*  without guard digits, but we know of none. */
 
- /*  DLASD3 is called from DLASD1. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  NL     (input) INTEGER */
 
- /*         The row dimension of the upper block.  NL >= 1. */
 
- /*  NR     (input) INTEGER */
 
- /*         The row dimension of the lower block.  NR >= 1. */
 
- /*  SQRE   (input) INTEGER */
 
- /*         = 0: the lower block is an NR-by-NR square matrix. */
 
- /*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 
- /*         The bidiagonal matrix has N = NL + NR + 1 rows and */
 
- /*         M = N + SQRE >= N columns. */
 
- /*  K      (input) INTEGER */
 
- /*         The size of the secular equation, 1 =< K = < N. */
 
- /*  D      (output) DOUBLE PRECISION array, dimension(K) */
 
- /*         On exit the square roots of the roots of the secular equation, */
 
- /*         in ascending order. */
 
- /*  Q      (workspace) DOUBLE PRECISION array, */
 
- /*                     dimension at least (LDQ,K). */
 
- /*  LDQ    (input) INTEGER */
 
- /*         The leading dimension of the array Q.  LDQ >= K. */
 
- /*  DSIGMA (input) DOUBLE PRECISION array, dimension(K) */
 
- /*         The first K elements of this array contain the old roots */
 
- /*         of the deflated updating problem.  These are the poles */
 
- /*         of the secular equation. */
 
- /*  U      (output) DOUBLE PRECISION array, dimension (LDU, N) */
 
- /*         The last N - K columns of this matrix contain the deflated */
 
- /*         left singular vectors. */
 
- /*  LDU    (input) INTEGER */
 
- /*         The leading dimension of the array U.  LDU >= N. */
 
- /*  U2     (input/output) DOUBLE PRECISION array, dimension (LDU2, N) */
 
- /*         The first K columns of this matrix contain the non-deflated */
 
- /*         left singular vectors for the split problem. */
 
- /*  LDU2   (input) INTEGER */
 
- /*         The leading dimension of the array U2.  LDU2 >= N. */
 
- /*  VT     (output) DOUBLE PRECISION array, dimension (LDVT, M) */
 
- /*         The last M - K columns of VT' contain the deflated */
 
- /*         right singular vectors. */
 
- /*  LDVT   (input) INTEGER */
 
- /*         The leading dimension of the array VT.  LDVT >= N. */
 
- /*  VT2    (input/output) DOUBLE PRECISION array, dimension (LDVT2, N) */
 
- /*         The first K columns of VT2' contain the non-deflated */
 
- /*         right singular vectors for the split problem. */
 
- /*  LDVT2  (input) INTEGER */
 
- /*         The leading dimension of the array VT2.  LDVT2 >= N. */
 
- /*  IDXC   (input) INTEGER array, dimension ( N ) */
 
- /*         The permutation used to arrange the columns of U (and rows of */
 
- /*         VT) into three groups:  the first group contains non-zero */
 
- /*         entries only at and above (or before) NL +1; the second */
 
- /*         contains non-zero entries only at and below (or after) NL+2; */
 
- /*         and the third is dense. The first column of U and the row of */
 
- /*         VT are treated separately, however. */
 
- /*         The rows of the singular vectors found by DLASD4 */
 
- /*         must be likewise permuted before the matrix multiplies can */
 
- /*         take place. */
 
- /*  CTOT   (input) INTEGER array, dimension ( 4 ) */
 
- /*         A count of the total number of the various types of columns */
 
- /*         in U (or rows in VT), as described in IDXC. The fourth column */
 
- /*         type is any column which has been deflated. */
 
- /*  Z      (input) DOUBLE PRECISION array, dimension (K) */
 
- /*         The first K elements of this array contain the components */
 
- /*         of the deflation-adjusted updating row vector. */
 
- /*  INFO   (output) INTEGER */
 
- /*         = 0:  successful exit. */
 
- /*         < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*         > 0:  if INFO = 1, an singular value did not converge */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  Based on contributions by */
 
- /*     Ming Gu and Huan Ren, Computer Science Division, University of */
 
- /*     California at Berkeley, USA */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters. */
 
-     /* Parameter adjustments */
 
-     --d__;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --dsigma;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     u2_dim1 = *ldu2;
 
-     u2_offset = 1 + u2_dim1;
 
-     u2 -= u2_offset;
 
-     vt_dim1 = *ldvt;
 
-     vt_offset = 1 + vt_dim1;
 
-     vt -= vt_offset;
 
-     vt2_dim1 = *ldvt2;
 
-     vt2_offset = 1 + vt2_dim1;
 
-     vt2 -= vt2_offset;
 
-     --idxc;
 
-     --ctot;
 
-     --z__;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*nl < 1) {
 
- 	*info = -1;
 
-     } else if (*nr < 1) {
 
- 	*info = -2;
 
-     } else if (*sqre != 1 && *sqre != 0) {
 
- 	*info = -3;
 
-     }
 
-     n = *nl + *nr + 1;
 
-     m = n + *sqre;
 
-     nlp1 = *nl + 1;
 
-     nlp2 = *nl + 2;
 
-     if (*k < 1 || *k > n) {
 
- 	*info = -4;
 
-     } else if (*ldq < *k) {
 
- 	*info = -7;
 
-     } else if (*ldu < n) {
 
- 	*info = -10;
 
-     } else if (*ldu2 < n) {
 
- 	*info = -12;
 
-     } else if (*ldvt < m) {
 
- 	*info = -14;
 
-     } else if (*ldvt2 < m) {
 
- 	*info = -16;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DLASD3", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*k == 1) {
 
- 	d__[1] = abs(z__[1]);
 
- 	dcopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
 
- 	if (z__[1] > 0.) {
 
- 	    dcopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
 
- 	} else {
 
- 	    i__1 = n;
 
- 	    for (i__ = 1; i__ <= i__1; ++i__) {
 
- 		u[i__ + u_dim1] = -u2[i__ + u2_dim1];
 
- /* L10: */
 
- 	    }
 
- 	}
 
- 	return 0;
 
-     }
 
- /*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
 
- /*     be computed with high relative accuracy (barring over/underflow). */
 
- /*     This is a problem on machines without a guard digit in */
 
- /*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
 
- /*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
 
- /*     which on any of these machines zeros out the bottommost */
 
- /*     bit of DSIGMA(I) if it is 1; this makes the subsequent */
 
- /*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
 
- /*     occurs. On binary machines with a guard digit (almost all */
 
- /*     machines) it does not change DSIGMA(I) at all. On hexadecimal */
 
- /*     and decimal machines with a guard digit, it slightly */
 
- /*     changes the bottommost bits of DSIGMA(I). It does not account */
 
- /*     for hexadecimal or decimal machines without guard digits */
 
- /*     (we know of none). We use a subroutine call to compute */
 
- /*     2*DSIGMA(I) to prevent optimizing compilers from eliminating */
 
- /*     this code. */
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	dsigma[i__] = dlamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
 
- /* L20: */
 
-     }
 
- /*     Keep a copy of Z. */
 
-     dcopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
 
- /*     Normalize Z. */
 
-     rho = dnrm2_(k, &z__[1], &c__1);
 
-     dlascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
 
-     rho *= rho;
 
- /*     Find the new singular values. */
 
-     i__1 = *k;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	dlasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j], 
 
- 		 &vt[j * vt_dim1 + 1], info);
 
- /*        If the zero finder fails, the computation is terminated. */
 
- 	if (*info != 0) {
 
- 	    return 0;
 
- 	}
 
- /* L30: */
 
-     }
 
- /*     Compute updated Z. */
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
 
- 	i__2 = i__ - 1;
 
- 	for (j = 1; j <= i__2; ++j) {
 
- 	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
 
- 		    i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
 
- /* L40: */
 
- 	}
 
- 	i__2 = *k - 1;
 
- 	for (j = i__; j <= i__2; ++j) {
 
- 	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
 
- 		    i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
 
- /* L50: */
 
- 	}
 
- 	d__2 = sqrt((d__1 = z__[i__], abs(d__1)));
 
- 	z__[i__] = d_sign(&d__2, &q[i__ + q_dim1]);
 
- /* L60: */
 
-     }
 
- /*     Compute left singular vectors of the modified diagonal matrix, */
 
- /*     and store related information for the right singular vectors. */
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * 
 
- 		vt_dim1 + 1];
 
- 	u[i__ * u_dim1 + 1] = -1.;
 
- 	i__2 = *k;
 
- 	for (j = 2; j <= i__2; ++j) {
 
- 	    vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ 
 
- 		    * vt_dim1];
 
- 	    u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
 
- /* L70: */
 
- 	}
 
- 	temp = dnrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
 
- 	q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
 
- 	i__2 = *k;
 
- 	for (j = 2; j <= i__2; ++j) {
 
- 	    jc = idxc[j];
 
- 	    q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
 
- /* L80: */
 
- 	}
 
- /* L90: */
 
-     }
 
- /*     Update the left singular vector matrix. */
 
-     if (*k == 2) {
 
- 	dgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset], 
 
- 		 ldq, &c_b26, &u[u_offset], ldu);
 
- 	goto L100;
 
-     }
 
-     if (ctot[1] > 0) {
 
- 	dgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], 
 
- 		ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
 
- 	if (ctot[3] > 0) {
 
- 	    ktemp = ctot[1] + 2 + ctot[2];
 
- 	    dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
 
- , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], 
 
- 		    ldu);
 
- 	}
 
-     } else if (ctot[3] > 0) {
 
- 	ktemp = ctot[1] + 2 + ctot[2];
 
- 	dgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], 
 
- 		ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
 
-     } else {
 
- 	dlacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
 
-     }
 
-     dcopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
 
-     ktemp = ctot[1] + 2;
 
-     ctemp = ctot[2] + ctot[3];
 
-     dgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2, 
 
- 	     &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
 
- /*     Generate the right singular vectors. */
 
- L100:
 
-     i__1 = *k;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	temp = dnrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
 
- 	q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
 
- 	i__2 = *k;
 
- 	for (j = 2; j <= i__2; ++j) {
 
- 	    jc = idxc[j];
 
- 	    q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
 
- /* L110: */
 
- 	}
 
- /* L120: */
 
-     }
 
- /*     Update the right singular vector matrix. */
 
-     if (*k == 2) {
 
- 	dgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
 
- , ldvt2, &c_b26, &vt[vt_offset], ldvt);
 
- 	return 0;
 
-     }
 
-     ktemp = ctot[1] + 1;
 
-     dgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
 
- 	    vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
 
-     ktemp = ctot[1] + 2 + ctot[2];
 
-     if (ktemp <= *ldvt2) {
 
- 	dgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], 
 
- 		ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], 
 
- 		ldvt);
 
-     }
 
-     ktemp = ctot[1] + 1;
 
-     nrp1 = *nr + *sqre;
 
-     if (ktemp > 1) {
 
- 	i__1 = *k;
 
- 	for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	    q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
 
- /* L130: */
 
- 	}
 
- 	i__1 = m;
 
- 	for (i__ = nlp2; i__ <= i__1; ++i__) {
 
- 	    vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
 
- /* L140: */
 
- 	}
 
-     }
 
-     ctemp = ctot[2] + 1 + ctot[3];
 
-     dgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
 
- 	    vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + 
 
- 	    1], ldvt);
 
-     return 0;
 
- /*     End of DLASD3 */
 
- } /* dlasd3_ */
 
 
  |