| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533 | /* dlaed2.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b3 = -1.;static integer c__1 = 1;/* Subroutine */ int dlaed2_(integer *k, integer *n, integer *n1, doublereal *	d__, doublereal *q, integer *ldq, integer *indxq, doublereal *rho, 	doublereal *z__, doublereal *dlamda, doublereal *w, doublereal *q2, 	integer *indx, integer *indxc, integer *indxp, integer *coltyp, 	integer *info){    /* System generated locals */    integer q_dim1, q_offset, i__1, i__2;    doublereal d__1, d__2, d__3, d__4;    /* Builtin functions */    double sqrt(doublereal);    /* Local variables */    doublereal c__;    integer i__, j;    doublereal s, t;    integer k2, n2, ct, nj, pj, js, iq1, iq2, n1p1;    doublereal eps, tau, tol;    integer psm[4], imax, jmax;    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 	    doublereal *, integer *, doublereal *, doublereal *);    integer ctot[4];    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *), dcopy_(integer *, doublereal *, integer *, doublereal 	    *, integer *);    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);    extern integer idamax_(integer *, doublereal *, integer *);    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 	    integer *, integer *, integer *), dlacpy_(char *, integer *, 	    integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *);/*  -- LAPACK routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLAED2 merges the two sets of eigenvalues together into a single *//*  sorted set.  Then it tries to deflate the size of the problem. *//*  There are two ways in which deflation can occur:  when two or more *//*  eigenvalues are close together or if there is a tiny entry in the *//*  Z vector.  For each such occurrence the order of the related secular *//*  equation problem is reduced by one. *//*  Arguments *//*  ========= *//*  K      (output) INTEGER *//*         The number of non-deflated eigenvalues, and the order of the *//*         related secular equation. 0 <= K <=N. *//*  N      (input) INTEGER *//*         The dimension of the symmetric tridiagonal matrix.  N >= 0. *//*  N1     (input) INTEGER *//*         The location of the last eigenvalue in the leading sub-matrix. *//*         min(1,N) <= N1 <= N/2. *//*  D      (input/output) DOUBLE PRECISION array, dimension (N) *//*         On entry, D contains the eigenvalues of the two submatrices to *//*         be combined. *//*         On exit, D contains the trailing (N-K) updated eigenvalues *//*         (those which were deflated) sorted into increasing order. *//*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N) *//*         On entry, Q contains the eigenvectors of two submatrices in *//*         the two square blocks with corners at (1,1), (N1,N1) *//*         and (N1+1, N1+1), (N,N). *//*         On exit, Q contains the trailing (N-K) updated eigenvectors *//*         (those which were deflated) in its last N-K columns. *//*  LDQ    (input) INTEGER *//*         The leading dimension of the array Q.  LDQ >= max(1,N). *//*  INDXQ  (input/output) INTEGER array, dimension (N) *//*         The permutation which separately sorts the two sub-problems *//*         in D into ascending order.  Note that elements in the second *//*         half of this permutation must first have N1 added to their *//*         values. Destroyed on exit. *//*  RHO    (input/output) DOUBLE PRECISION *//*         On entry, the off-diagonal element associated with the rank-1 *//*         cut which originally split the two submatrices which are now *//*         being recombined. *//*         On exit, RHO has been modified to the value required by *//*         DLAED3. *//*  Z      (input) DOUBLE PRECISION array, dimension (N) *//*         On entry, Z contains the updating vector (the last *//*         row of the first sub-eigenvector matrix and the first row of *//*         the second sub-eigenvector matrix). *//*         On exit, the contents of Z have been destroyed by the updating *//*         process. *//*  DLAMDA (output) DOUBLE PRECISION array, dimension (N) *//*         A copy of the first K eigenvalues which will be used by *//*         DLAED3 to form the secular equation. *//*  W      (output) DOUBLE PRECISION array, dimension (N) *//*         The first k values of the final deflation-altered z-vector *//*         which will be passed to DLAED3. *//*  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2) *//*         A copy of the first K eigenvectors which will be used by *//*         DLAED3 in a matrix multiply (DGEMM) to solve for the new *//*         eigenvectors. *//*  INDX   (workspace) INTEGER array, dimension (N) *//*         The permutation used to sort the contents of DLAMDA into *//*         ascending order. *//*  INDXC  (output) INTEGER array, dimension (N) *//*         The permutation used to arrange the columns of the deflated *//*         Q matrix into three groups:  the first group contains non-zero *//*         elements only at and above N1, the second contains *//*         non-zero elements only below N1, and the third is dense. *//*  INDXP  (workspace) INTEGER array, dimension (N) *//*         The permutation used to place deflated values of D at the end *//*         of the array.  INDXP(1:K) points to the nondeflated D-values *//*         and INDXP(K+1:N) points to the deflated eigenvalues. *//*  COLTYP (workspace/output) INTEGER array, dimension (N) *//*         During execution, a label which will indicate which of the *//*         following types a column in the Q2 matrix is: *//*         1 : non-zero in the upper half only; *//*         2 : dense; *//*         3 : non-zero in the lower half only; *//*         4 : deflated. *//*         On exit, COLTYP(i) is the number of columns of type i, *//*         for i=1 to 4 only. *//*  INFO   (output) INTEGER *//*          = 0:  successful exit. *//*          < 0:  if INFO = -i, the i-th argument had an illegal value. *//*  Further Details *//*  =============== *//*  Based on contributions by *//*     Jeff Rutter, Computer Science Division, University of California *//*     at Berkeley, USA *//*  Modified by Francoise Tisseur, University of Tennessee. *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Arrays .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Functions .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Test the input parameters. */    /* Parameter adjustments */    --d__;    q_dim1 = *ldq;    q_offset = 1 + q_dim1;    q -= q_offset;    --indxq;    --z__;    --dlamda;    --w;    --q2;    --indx;    --indxc;    --indxp;    --coltyp;    /* Function Body */    *info = 0;    if (*n < 0) {	*info = -2;    } else if (*ldq < max(1,*n)) {	*info = -6;    } else /* if(complicated condition) */ {/* Computing MIN */	i__1 = 1, i__2 = *n / 2;	if (min(i__1,i__2) > *n1 || *n / 2 < *n1) {	    *info = -3;	}    }    if (*info != 0) {	i__1 = -(*info);	xerbla_("DLAED2", &i__1);	return 0;    }/*     Quick return if possible */    if (*n == 0) {	return 0;    }    n2 = *n - *n1;    n1p1 = *n1 + 1;    if (*rho < 0.) {	dscal_(&n2, &c_b3, &z__[n1p1], &c__1);    }/*     Normalize z so that norm(z) = 1.  Since z is the concatenation of *//*     two normalized vectors, norm2(z) = sqrt(2). */    t = 1. / sqrt(2.);    dscal_(n, &t, &z__[1], &c__1);/*     RHO = ABS( norm(z)**2 * RHO ) */    *rho = (d__1 = *rho * 2., abs(d__1));/*     Sort the eigenvalues into increasing order */    i__1 = *n;    for (i__ = n1p1; i__ <= i__1; ++i__) {	indxq[i__] += *n1;/* L10: */    }/*     re-integrate the deflated parts from the last pass */    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	dlamda[i__] = d__[indxq[i__]];/* L20: */    }    dlamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);    i__1 = *n;    for (i__ = 1; i__ <= i__1; ++i__) {	indx[i__] = indxq[indxc[i__]];/* L30: */    }/*     Calculate the allowable deflation tolerance */    imax = idamax_(n, &z__[1], &c__1);    jmax = idamax_(n, &d__[1], &c__1);    eps = dlamch_("Epsilon");/* Computing MAX */    d__3 = (d__1 = d__[jmax], abs(d__1)), d__4 = (d__2 = z__[imax], abs(d__2))	    ;    tol = eps * 8. * max(d__3,d__4);/*     If the rank-1 modifier is small enough, no more needs to be done *//*     except to reorganize Q so that its columns correspond with the *//*     elements in D. */    if (*rho * (d__1 = z__[imax], abs(d__1)) <= tol) {	*k = 0;	iq2 = 1;	i__1 = *n;	for (j = 1; j <= i__1; ++j) {	    i__ = indx[j];	    dcopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);	    dlamda[j] = d__[i__];	    iq2 += *n;/* L40: */	}	dlacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);	dcopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);	goto L190;    }/*     If there are multiple eigenvalues then the problem deflates.  Here *//*     the number of equal eigenvalues are found.  As each equal *//*     eigenvalue is found, an elementary reflector is computed to rotate *//*     the corresponding eigensubspace so that the corresponding *//*     components of Z are zero in this new basis. */    i__1 = *n1;    for (i__ = 1; i__ <= i__1; ++i__) {	coltyp[i__] = 1;/* L50: */    }    i__1 = *n;    for (i__ = n1p1; i__ <= i__1; ++i__) {	coltyp[i__] = 3;/* L60: */    }    *k = 0;    k2 = *n + 1;    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	nj = indx[j];	if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {/*           Deflate due to small z component. */	    --k2;	    coltyp[nj] = 4;	    indxp[k2] = nj;	    if (j == *n) {		goto L100;	    }	} else {	    pj = nj;	    goto L80;	}/* L70: */    }L80:    ++j;    nj = indx[j];    if (j > *n) {	goto L100;    }    if (*rho * (d__1 = z__[nj], abs(d__1)) <= tol) {/*        Deflate due to small z component. */	--k2;	coltyp[nj] = 4;	indxp[k2] = nj;    } else {/*        Check if eigenvalues are close enough to allow deflation. */	s = z__[pj];	c__ = z__[nj];/*        Find sqrt(a**2+b**2) without overflow or *//*        destructive underflow. */	tau = dlapy2_(&c__, &s);	t = d__[nj] - d__[pj];	c__ /= tau;	s = -s / tau;	if ((d__1 = t * c__ * s, abs(d__1)) <= tol) {/*           Deflation is possible. */	    z__[nj] = tau;	    z__[pj] = 0.;	    if (coltyp[nj] != coltyp[pj]) {		coltyp[nj] = 2;	    }	    coltyp[pj] = 4;	    drot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &		    c__, &s);/* Computing 2nd power */	    d__1 = c__;/* Computing 2nd power */	    d__2 = s;	    t = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);/* Computing 2nd power */	    d__1 = s;/* Computing 2nd power */	    d__2 = c__;	    d__[nj] = d__[pj] * (d__1 * d__1) + d__[nj] * (d__2 * d__2);	    d__[pj] = t;	    --k2;	    i__ = 1;L90:	    if (k2 + i__ <= *n) {		if (d__[pj] < d__[indxp[k2 + i__]]) {		    indxp[k2 + i__ - 1] = indxp[k2 + i__];		    indxp[k2 + i__] = pj;		    ++i__;		    goto L90;		} else {		    indxp[k2 + i__ - 1] = pj;		}	    } else {		indxp[k2 + i__ - 1] = pj;	    }	    pj = nj;	} else {	    ++(*k);	    dlamda[*k] = d__[pj];	    w[*k] = z__[pj];	    indxp[*k] = pj;	    pj = nj;	}    }    goto L80;L100:/*     Record the last eigenvalue. */    ++(*k);    dlamda[*k] = d__[pj];    w[*k] = z__[pj];    indxp[*k] = pj;/*     Count up the total number of the various types of columns, then *//*     form a permutation which positions the four column types into *//*     four uniform groups (although one or more of these groups may be *//*     empty). */    for (j = 1; j <= 4; ++j) {	ctot[j - 1] = 0;/* L110: */    }    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	ct = coltyp[j];	++ctot[ct - 1];/* L120: */    }/*     PSM(*) = Position in SubMatrix (of types 1 through 4) */    psm[0] = 1;    psm[1] = ctot[0] + 1;    psm[2] = psm[1] + ctot[1];    psm[3] = psm[2] + ctot[2];    *k = *n - ctot[3];/*     Fill out the INDXC array so that the permutation which it induces *//*     will place all type-1 columns first, all type-2 columns next, *//*     then all type-3's, and finally all type-4's. */    i__1 = *n;    for (j = 1; j <= i__1; ++j) {	js = indxp[j];	ct = coltyp[js];	indx[psm[ct - 1]] = js;	indxc[psm[ct - 1]] = j;	++psm[ct - 1];/* L130: */    }/*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA *//*     and Q2 respectively.  The eigenvalues/vectors which were not *//*     deflated go into the first K slots of DLAMDA and Q2 respectively, *//*     while those which were deflated go into the last N - K slots. */    i__ = 1;    iq1 = 1;    iq2 = (ctot[0] + ctot[1]) * *n1 + 1;    i__1 = ctot[0];    for (j = 1; j <= i__1; ++j) {	js = indx[i__];	dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);	z__[i__] = d__[js];	++i__;	iq1 += *n1;/* L140: */    }    i__1 = ctot[1];    for (j = 1; j <= i__1; ++j) {	js = indx[i__];	dcopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);	dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);	z__[i__] = d__[js];	++i__;	iq1 += *n1;	iq2 += n2;/* L150: */    }    i__1 = ctot[2];    for (j = 1; j <= i__1; ++j) {	js = indx[i__];	dcopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);	z__[i__] = d__[js];	++i__;	iq2 += n2;/* L160: */    }    iq1 = iq2;    i__1 = ctot[3];    for (j = 1; j <= i__1; ++j) {	js = indx[i__];	dcopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);	iq2 += *n;	z__[i__] = d__[js];	++i__;/* L170: */    }/*     The deflated eigenvalues and their corresponding vectors go back *//*     into the last N - K slots of D and Q respectively. */    dlacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);    i__1 = *n - *k;    dcopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);/*     Copy CTOT into COLTYP for referencing in DLAED3. */    for (j = 1; j <= 4; ++j) {	coltyp[j] = ctot[j - 1];/* L180: */    }L190:    return 0;/*     End of DLAED2 */} /* dlaed2_ */
 |