| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435 | /* dlabrd.f -- translated by f2c (version 20061008).   You must link the resulting object file with libf2c:	on Microsoft Windows system, link with libf2c.lib;	on Linux or Unix systems, link with .../path/to/libf2c.a -lm	or, if you install libf2c.a in a standard place, with -lf2c -lm	-- in that order, at the end of the command line, as in		cc *.o -lf2c -lm	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,		http://www.netlib.org/f2c/libf2c.zip*/#include "f2c.h"#include "blaswrap.h"/* Table of constant values */static doublereal c_b4 = -1.;static doublereal c_b5 = 1.;static integer c__1 = 1;static doublereal c_b16 = 0.;/* Subroutine */ int dlabrd_(integer *m, integer *n, integer *nb, doublereal *	a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq, 	doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer 	*ldy){    /* System generated locals */    integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2, 	    i__3;    /* Local variables */    integer i__;    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 	    integer *), dgemv_(char *, integer *, integer *, doublereal *, 	    doublereal *, integer *, doublereal *, integer *, doublereal *, 	    doublereal *, integer *), dlarfg_(integer *, doublereal *, 	     doublereal *, integer *, doublereal *);/*  -- LAPACK auxiliary routine (version 3.2) -- *//*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. *//*     November 2006 *//*     .. Scalar Arguments .. *//*     .. *//*     .. Array Arguments .. *//*     .. *//*  Purpose *//*  ======= *//*  DLABRD reduces the first NB rows and columns of a real general *//*  m by n matrix A to upper or lower bidiagonal form by an orthogonal *//*  transformation Q' * A * P, and returns the matrices X and Y which *//*  are needed to apply the transformation to the unreduced part of A. *//*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower *//*  bidiagonal form. *//*  This is an auxiliary routine called by DGEBRD *//*  Arguments *//*  ========= *//*  M       (input) INTEGER *//*          The number of rows in the matrix A. *//*  N       (input) INTEGER *//*          The number of columns in the matrix A. *//*  NB      (input) INTEGER *//*          The number of leading rows and columns of A to be reduced. *//*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) *//*          On entry, the m by n general matrix to be reduced. *//*          On exit, the first NB rows and columns of the matrix are *//*          overwritten; the rest of the array is unchanged. *//*          If m >= n, elements on and below the diagonal in the first NB *//*            columns, with the array TAUQ, represent the orthogonal *//*            matrix Q as a product of elementary reflectors; and *//*            elements above the diagonal in the first NB rows, with the *//*            array TAUP, represent the orthogonal matrix P as a product *//*            of elementary reflectors. *//*          If m < n, elements below the diagonal in the first NB *//*            columns, with the array TAUQ, represent the orthogonal *//*            matrix Q as a product of elementary reflectors, and *//*            elements on and above the diagonal in the first NB rows, *//*            with the array TAUP, represent the orthogonal matrix P as *//*            a product of elementary reflectors. *//*          See Further Details. *//*  LDA     (input) INTEGER *//*          The leading dimension of the array A.  LDA >= max(1,M). *//*  D       (output) DOUBLE PRECISION array, dimension (NB) *//*          The diagonal elements of the first NB rows and columns of *//*          the reduced matrix.  D(i) = A(i,i). *//*  E       (output) DOUBLE PRECISION array, dimension (NB) *//*          The off-diagonal elements of the first NB rows and columns of *//*          the reduced matrix. *//*  TAUQ    (output) DOUBLE PRECISION array dimension (NB) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix Q. See Further Details. *//*  TAUP    (output) DOUBLE PRECISION array, dimension (NB) *//*          The scalar factors of the elementary reflectors which *//*          represent the orthogonal matrix P. See Further Details. *//*  X       (output) DOUBLE PRECISION array, dimension (LDX,NB) *//*          The m-by-nb matrix X required to update the unreduced part *//*          of A. *//*  LDX     (input) INTEGER *//*          The leading dimension of the array X. LDX >= M. *//*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB) *//*          The n-by-nb matrix Y required to update the unreduced part *//*          of A. *//*  LDY     (input) INTEGER *//*          The leading dimension of the array Y. LDY >= N. *//*  Further Details *//*  =============== *//*  The matrices Q and P are represented as products of elementary *//*  reflectors: *//*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb) *//*  Each H(i) and G(i) has the form: *//*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u' *//*  where tauq and taup are real scalars, and v and u are real vectors. *//*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in *//*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in *//*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). *//*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in *//*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in *//*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). *//*  The elements of the vectors v and u together form the m-by-nb matrix *//*  V and the nb-by-n matrix U' which are needed, with X and Y, to apply *//*  the transformation to the unreduced part of the matrix, using a block *//*  update of the form:  A := A - V*Y' - X*U'. *//*  The contents of A on exit are illustrated by the following examples *//*  with nb = 2: *//*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n): *//*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 ) *//*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 ) *//*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  ) *//*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) *//*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  ) *//*    (  v1  v2  a   a   a  ) *//*  where a denotes an element of the original matrix which is unchanged, *//*  vi denotes an element of the vector defining H(i), and ui an element *//*  of the vector defining G(i). *//*  ===================================================================== *//*     .. Parameters .. *//*     .. *//*     .. Local Scalars .. *//*     .. *//*     .. External Subroutines .. *//*     .. *//*     .. Intrinsic Functions .. *//*     .. *//*     .. Executable Statements .. *//*     Quick return if possible */    /* Parameter adjustments */    a_dim1 = *lda;    a_offset = 1 + a_dim1;    a -= a_offset;    --d__;    --e;    --tauq;    --taup;    x_dim1 = *ldx;    x_offset = 1 + x_dim1;    x -= x_offset;    y_dim1 = *ldy;    y_offset = 1 + y_dim1;    y -= y_offset;    /* Function Body */    if (*m <= 0 || *n <= 0) {	return 0;    }    if (*m >= *n) {/*        Reduce to upper bidiagonal form */	i__1 = *nb;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Update A(i:m,i) */	    i__2 = *m - i__ + 1;	    i__3 = i__ - 1;	    dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda, 		     &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], &		    c__1);	    i__2 = *m - i__ + 1;	    i__3 = i__ - 1;	    dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx, 		     &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ * 		    a_dim1], &c__1);/*           Generate reflection Q(i) to annihilate A(i+1:m,i) */	    i__2 = *m - i__ + 1;/* Computing MIN */	    i__3 = i__ + 1;	    dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ * 		    a_dim1], &c__1, &tauq[i__]);	    d__[i__] = a[i__ + i__ * a_dim1];	    if (i__ < *n) {		a[i__ + i__ * a_dim1] = 1.;/*              Compute Y(i+1:n,i) */		i__2 = *m - i__ + 1;		i__3 = *n - i__;		dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) * 			a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &			y[i__ + 1 + i__ * y_dim1], &c__1);		i__2 = *m - i__ + 1;		i__3 = i__ - 1;		dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1], 			lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * 			y_dim1 + 1], &c__1);		i__2 = *n - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + 			y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[			i__ + 1 + i__ * y_dim1], &c__1);		i__2 = *m - i__ + 1;		i__3 = i__ - 1;		dgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1], 			ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ * 			y_dim1 + 1], &c__1);		i__2 = i__ - 1;		i__3 = *n - i__;		dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * 			a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, 			&y[i__ + 1 + i__ * y_dim1], &c__1);		i__2 = *n - i__;		dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);/*              Update A(i,i+1:n) */		i__2 = *n - i__;		dgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 + 			y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + (			i__ + 1) * a_dim1], lda);		i__2 = i__ - 1;		i__3 = *n - i__;		dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) * 			a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[			i__ + (i__ + 1) * a_dim1], lda);/*              Generate reflection P(i) to annihilate A(i,i+2:n) */		i__2 = *n - i__;/* Computing MIN */		i__3 = i__ + 2;		dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(			i__3, *n)* a_dim1], lda, &taup[i__]);		e[i__] = a[i__ + (i__ + 1) * a_dim1];		a[i__ + (i__ + 1) * a_dim1] = 1.;/*              Compute X(i+1:m,i) */		i__2 = *m - i__;		i__3 = *n - i__;		dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ 			+ 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1], 			lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1);		i__2 = *n - i__;		dgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1], 			ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[			i__ * x_dim1 + 1], &c__1);		i__2 = *m - i__;		dgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 + 			a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[			i__ + 1 + i__ * x_dim1], &c__1);		i__2 = i__ - 1;		i__3 = *n - i__;		dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) * 			a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &			c_b16, &x[i__ * x_dim1 + 1], &c__1);		i__2 = *m - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + 			x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[			i__ + 1 + i__ * x_dim1], &c__1);		i__2 = *m - i__;		dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);	    }/* L10: */	}    } else {/*        Reduce to lower bidiagonal form */	i__1 = *nb;	for (i__ = 1; i__ <= i__1; ++i__) {/*           Update A(i,i:n) */	    i__2 = *n - i__ + 1;	    i__3 = i__ - 1;	    dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy, 		     &a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1], 		    lda);	    i__2 = i__ - 1;	    i__3 = *n - i__ + 1;	    dgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1], 		    lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1], 		     lda);/*           Generate reflection P(i) to annihilate A(i,i+1:n) */	    i__2 = *n - i__ + 1;/* Computing MIN */	    i__3 = i__ + 1;	    dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)* 		    a_dim1], lda, &taup[i__]);	    d__[i__] = a[i__ + i__ * a_dim1];	    if (i__ < *m) {		a[i__ + i__ * a_dim1] = 1.;/*              Compute X(i+1:m,i) */		i__2 = *m - i__;		i__3 = *n - i__ + 1;		dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ *			 a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &			x[i__ + 1 + i__ * x_dim1], &c__1);		i__2 = *n - i__ + 1;		i__3 = i__ - 1;		dgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1], 			ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ * 			x_dim1 + 1], &c__1);		i__2 = *m - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + 			a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[			i__ + 1 + i__ * x_dim1], &c__1);		i__2 = i__ - 1;		i__3 = *n - i__ + 1;		dgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 + 			1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *			 x_dim1 + 1], &c__1);		i__2 = *m - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 + 			x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[			i__ + 1 + i__ * x_dim1], &c__1);		i__2 = *m - i__;		dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);/*              Update A(i+1:m,i) */		i__2 = *m - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 + 			a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ + 			1 + i__ * a_dim1], &c__1);		i__2 = *m - i__;		dgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 + 			x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[			i__ + 1 + i__ * a_dim1], &c__1);/*              Generate reflection Q(i) to annihilate A(i+2:m,i) */		i__2 = *m - i__;/* Computing MIN */		i__3 = i__ + 2;		dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+ 			i__ * a_dim1], &c__1, &tauq[i__]);		e[i__] = a[i__ + 1 + i__ * a_dim1];		a[i__ + 1 + i__ * a_dim1] = 1.;/*              Compute Y(i+1:n,i) */		i__2 = *m - i__;		i__3 = *n - i__;		dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ + 			1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, 			&c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1);		i__2 = *m - i__;		i__3 = i__ - 1;		dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1], 			 lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[			i__ * y_dim1 + 1], &c__1);		i__2 = *n - i__;		i__3 = i__ - 1;		dgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 + 			y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[			i__ + 1 + i__ * y_dim1], &c__1);		i__2 = *m - i__;		dgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1], 			ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[			i__ * y_dim1 + 1], &c__1);		i__2 = *n - i__;		dgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1 			+ 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__ 			+ 1 + i__ * y_dim1], &c__1);		i__2 = *n - i__;		dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);	    }/* L20: */	}    }    return 0;/*     End of DLABRD */} /* dlabrd_ */
 |