| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 | 
							- /* dgttrf.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Subroutine */ int dgttrf_(integer *n, doublereal *dl, doublereal *d__, 
 
- 	doublereal *du, doublereal *du2, integer *ipiv, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer i__1;
 
-     doublereal d__1, d__2;
 
-     /* Local variables */
 
-     integer i__;
 
-     doublereal fact, temp;
 
-     extern /* Subroutine */ int xerbla_(char *, integer *);
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGTTRF computes an LU factorization of a real tridiagonal matrix A */
 
- /*  using elimination with partial pivoting and row interchanges. */
 
- /*  The factorization has the form */
 
- /*     A = L * U */
 
- /*  where L is a product of permutation and unit lower bidiagonal */
 
- /*  matrices and U is upper triangular with nonzeros in only the main */
 
- /*  diagonal and first two superdiagonals. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  N       (input) INTEGER */
 
- /*          The order of the matrix A. */
 
- /*  DL      (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, DL must contain the (n-1) sub-diagonal elements of */
 
- /*          A. */
 
- /*          On exit, DL is overwritten by the (n-1) multipliers that */
 
- /*          define the matrix L from the LU factorization of A. */
 
- /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 
- /*          On entry, D must contain the diagonal elements of A. */
 
- /*          On exit, D is overwritten by the n diagonal elements of the */
 
- /*          upper triangular matrix U from the LU factorization of A. */
 
- /*  DU      (input/output) DOUBLE PRECISION array, dimension (N-1) */
 
- /*          On entry, DU must contain the (n-1) super-diagonal elements */
 
- /*          of A. */
 
- /*          On exit, DU is overwritten by the (n-1) elements of the first */
 
- /*          super-diagonal of U. */
 
- /*  DU2     (output) DOUBLE PRECISION array, dimension (N-2) */
 
- /*          On exit, DU2 is overwritten by the (n-2) elements of the */
 
- /*          second super-diagonal of U. */
 
- /*  IPIV    (output) INTEGER array, dimension (N) */
 
- /*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
 
- /*          interchanged with row IPIV(i).  IPIV(i) will always be either */
 
- /*          i or i+1; IPIV(i) = i indicates a row interchange was not */
 
- /*          required. */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -k, the k-th argument had an illegal value */
 
- /*          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization */
 
- /*                has been completed, but the factor U is exactly */
 
- /*                singular, and division by zero will occur if it is used */
 
- /*                to solve a system of equations. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
-     /* Parameter adjustments */
 
-     --ipiv;
 
-     --du2;
 
-     --du;
 
-     --d__;
 
-     --dl;
 
-     /* Function Body */
 
-     *info = 0;
 
-     if (*n < 0) {
 
- 	*info = -1;
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGTTRF", &i__1);
 
- 	return 0;
 
-     }
 
- /*     Quick return if possible */
 
-     if (*n == 0) {
 
- 	return 0;
 
-     }
 
- /*     Initialize IPIV(i) = i and DU2(I) = 0 */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	ipiv[i__] = i__;
 
- /* L10: */
 
-     }
 
-     i__1 = *n - 2;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	du2[i__] = 0.;
 
- /* L20: */
 
-     }
 
-     i__1 = *n - 2;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
 
- /*           No row interchange required, eliminate DL(I) */
 
- 	    if (d__[i__] != 0.) {
 
- 		fact = dl[i__] / d__[i__];
 
- 		dl[i__] = fact;
 
- 		d__[i__ + 1] -= fact * du[i__];
 
- 	    }
 
- 	} else {
 
- /*           Interchange rows I and I+1, eliminate DL(I) */
 
- 	    fact = d__[i__] / dl[i__];
 
- 	    d__[i__] = dl[i__];
 
- 	    dl[i__] = fact;
 
- 	    temp = du[i__];
 
- 	    du[i__] = d__[i__ + 1];
 
- 	    d__[i__ + 1] = temp - fact * d__[i__ + 1];
 
- 	    du2[i__] = du[i__ + 1];
 
- 	    du[i__ + 1] = -fact * du[i__ + 1];
 
- 	    ipiv[i__] = i__ + 1;
 
- 	}
 
- /* L30: */
 
-     }
 
-     if (*n > 1) {
 
- 	i__ = *n - 1;
 
- 	if ((d__1 = d__[i__], abs(d__1)) >= (d__2 = dl[i__], abs(d__2))) {
 
- 	    if (d__[i__] != 0.) {
 
- 		fact = dl[i__] / d__[i__];
 
- 		dl[i__] = fact;
 
- 		d__[i__ + 1] -= fact * du[i__];
 
- 	    }
 
- 	} else {
 
- 	    fact = d__[i__] / dl[i__];
 
- 	    d__[i__] = dl[i__];
 
- 	    dl[i__] = fact;
 
- 	    temp = du[i__];
 
- 	    du[i__] = d__[i__ + 1];
 
- 	    d__[i__ + 1] = temp - fact * d__[i__ + 1];
 
- 	    ipiv[i__] = i__ + 1;
 
- 	}
 
-     }
 
- /*     Check for a zero on the diagonal of U. */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if (d__[i__] == 0.) {
 
- 	    *info = i__;
 
- 	    goto L50;
 
- 	}
 
- /* L40: */
 
-     }
 
- L50:
 
-     return 0;
 
- /*     End of DGTTRF */
 
- } /* dgttrf_ */
 
 
  |