| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513 | 
							- /* dggsvp.f -- translated by f2c (version 20061008).
 
-    You must link the resulting object file with libf2c:
 
- 	on Microsoft Windows system, link with libf2c.lib;
 
- 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 
- 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 
- 	-- in that order, at the end of the command line, as in
 
- 		cc *.o -lf2c -lm
 
- 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 
- 		http://www.netlib.org/f2c/libf2c.zip
 
- */
 
- #include "f2c.h"
 
- #include "blaswrap.h"
 
- /* Table of constant values */
 
- static doublereal c_b12 = 0.;
 
- static doublereal c_b22 = 1.;
 
- /* Subroutine */ int dggsvp_(char *jobu, char *jobv, char *jobq, integer *m, 
 
- 	integer *p, integer *n, doublereal *a, integer *lda, doublereal *b, 
 
- 	integer *ldb, doublereal *tola, doublereal *tolb, integer *k, integer 
 
- 	*l, doublereal *u, integer *ldu, doublereal *v, integer *ldv, 
 
- 	doublereal *q, integer *ldq, integer *iwork, doublereal *tau, 
 
- 	doublereal *work, integer *info)
 
- {
 
-     /* System generated locals */
 
-     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1, 
 
- 	    u_offset, v_dim1, v_offset, i__1, i__2, i__3;
 
-     doublereal d__1;
 
-     /* Local variables */
 
-     integer i__, j;
 
-     extern logical lsame_(char *, char *);
 
-     logical wantq, wantu, wantv;
 
-     extern /* Subroutine */ int dgeqr2_(integer *, integer *, doublereal *, 
 
- 	    integer *, doublereal *, doublereal *, integer *), dgerq2_(
 
- 	    integer *, integer *, doublereal *, integer *, doublereal *, 
 
- 	    doublereal *, integer *), dorg2r_(integer *, integer *, integer *, 
 
- 	     doublereal *, integer *, doublereal *, doublereal *, integer *), 
 
- 	    dorm2r_(char *, char *, integer *, integer *, integer *, 
 
- 	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dormr2_(char *, char *, 
 
- 	    integer *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, doublereal *, integer *, doublereal *, integer *), dgeqpf_(integer *, integer *, doublereal *, 
 
- 	    integer *, integer *, doublereal *, doublereal *, integer *), 
 
- 	    dlacpy_(char *, integer *, integer *, doublereal *, integer *, 
 
- 	    doublereal *, integer *), dlaset_(char *, integer *, 
 
- 	    integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dlapmt_(logical *, 
 
- 	    integer *, integer *, doublereal *, integer *, integer *);
 
-     logical forwrd;
 
- /*  -- LAPACK routine (version 3.2) -- */
 
- /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 
- /*     November 2006 */
 
- /*     .. Scalar Arguments .. */
 
- /*     .. */
 
- /*     .. Array Arguments .. */
 
- /*     .. */
 
- /*  Purpose */
 
- /*  ======= */
 
- /*  DGGSVP computes orthogonal matrices U, V and Q such that */
 
- /*                   N-K-L  K    L */
 
- /*   U'*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0; */
 
- /*                L ( 0     0   A23 ) */
 
- /*            M-K-L ( 0     0    0  ) */
 
- /*                   N-K-L  K    L */
 
- /*          =     K ( 0    A12  A13 )  if M-K-L < 0; */
 
- /*              M-K ( 0     0   A23 ) */
 
- /*                 N-K-L  K    L */
 
- /*   V'*B*Q =   L ( 0     0   B13 ) */
 
- /*            P-L ( 0     0    0  ) */
 
- /*  where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
 
- /*  upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
 
- /*  otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective */
 
- /*  numerical rank of the (M+P)-by-N matrix (A',B')'.  Z' denotes the */
 
- /*  transpose of Z. */
 
- /*  This decomposition is the preprocessing step for computing the */
 
- /*  Generalized Singular Value Decomposition (GSVD), see subroutine */
 
- /*  DGGSVD. */
 
- /*  Arguments */
 
- /*  ========= */
 
- /*  JOBU    (input) CHARACTER*1 */
 
- /*          = 'U':  Orthogonal matrix U is computed; */
 
- /*          = 'N':  U is not computed. */
 
- /*  JOBV    (input) CHARACTER*1 */
 
- /*          = 'V':  Orthogonal matrix V is computed; */
 
- /*          = 'N':  V is not computed. */
 
- /*  JOBQ    (input) CHARACTER*1 */
 
- /*          = 'Q':  Orthogonal matrix Q is computed; */
 
- /*          = 'N':  Q is not computed. */
 
- /*  M       (input) INTEGER */
 
- /*          The number of rows of the matrix A.  M >= 0. */
 
- /*  P       (input) INTEGER */
 
- /*          The number of rows of the matrix B.  P >= 0. */
 
- /*  N       (input) INTEGER */
 
- /*          The number of columns of the matrices A and B.  N >= 0. */
 
- /*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
 
- /*          On entry, the M-by-N matrix A. */
 
- /*          On exit, A contains the triangular (or trapezoidal) matrix */
 
- /*          described in the Purpose section. */
 
- /*  LDA     (input) INTEGER */
 
- /*          The leading dimension of the array A. LDA >= max(1,M). */
 
- /*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N) */
 
- /*          On entry, the P-by-N matrix B. */
 
- /*          On exit, B contains the triangular matrix described in */
 
- /*          the Purpose section. */
 
- /*  LDB     (input) INTEGER */
 
- /*          The leading dimension of the array B. LDB >= max(1,P). */
 
- /*  TOLA    (input) DOUBLE PRECISION */
 
- /*  TOLB    (input) DOUBLE PRECISION */
 
- /*          TOLA and TOLB are the thresholds to determine the effective */
 
- /*          numerical rank of matrix B and a subblock of A. Generally, */
 
- /*          they are set to */
 
- /*             TOLA = MAX(M,N)*norm(A)*MAZHEPS, */
 
- /*             TOLB = MAX(P,N)*norm(B)*MAZHEPS. */
 
- /*          The size of TOLA and TOLB may affect the size of backward */
 
- /*          errors of the decomposition. */
 
- /*  K       (output) INTEGER */
 
- /*  L       (output) INTEGER */
 
- /*          On exit, K and L specify the dimension of the subblocks */
 
- /*          described in Purpose. */
 
- /*          K + L = effective numerical rank of (A',B')'. */
 
- /*  U       (output) DOUBLE PRECISION array, dimension (LDU,M) */
 
- /*          If JOBU = 'U', U contains the orthogonal matrix U. */
 
- /*          If JOBU = 'N', U is not referenced. */
 
- /*  LDU     (input) INTEGER */
 
- /*          The leading dimension of the array U. LDU >= max(1,M) if */
 
- /*          JOBU = 'U'; LDU >= 1 otherwise. */
 
- /*  V       (output) DOUBLE PRECISION array, dimension (LDV,P) */
 
- /*          If JOBV = 'V', V contains the orthogonal matrix V. */
 
- /*          If JOBV = 'N', V is not referenced. */
 
- /*  LDV     (input) INTEGER */
 
- /*          The leading dimension of the array V. LDV >= max(1,P) if */
 
- /*          JOBV = 'V'; LDV >= 1 otherwise. */
 
- /*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N) */
 
- /*          If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
 
- /*          If JOBQ = 'N', Q is not referenced. */
 
- /*  LDQ     (input) INTEGER */
 
- /*          The leading dimension of the array Q. LDQ >= max(1,N) if */
 
- /*          JOBQ = 'Q'; LDQ >= 1 otherwise. */
 
- /*  IWORK   (workspace) INTEGER array, dimension (N) */
 
- /*  TAU     (workspace) DOUBLE PRECISION array, dimension (N) */
 
- /*  WORK    (workspace) DOUBLE PRECISION array, dimension (max(3*N,M,P)) */
 
- /*  INFO    (output) INTEGER */
 
- /*          = 0:  successful exit */
 
- /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 
- /*  Further Details */
 
- /*  =============== */
 
- /*  The subroutine uses LAPACK subroutine DGEQPF for the QR factorization */
 
- /*  with column pivoting to detect the effective numerical rank of the */
 
- /*  a matrix. It may be replaced by a better rank determination strategy. */
 
- /*  ===================================================================== */
 
- /*     .. Parameters .. */
 
- /*     .. */
 
- /*     .. Local Scalars .. */
 
- /*     .. */
 
- /*     .. External Functions .. */
 
- /*     .. */
 
- /*     .. External Subroutines .. */
 
- /*     .. */
 
- /*     .. Intrinsic Functions .. */
 
- /*     .. */
 
- /*     .. Executable Statements .. */
 
- /*     Test the input parameters */
 
-     /* Parameter adjustments */
 
-     a_dim1 = *lda;
 
-     a_offset = 1 + a_dim1;
 
-     a -= a_offset;
 
-     b_dim1 = *ldb;
 
-     b_offset = 1 + b_dim1;
 
-     b -= b_offset;
 
-     u_dim1 = *ldu;
 
-     u_offset = 1 + u_dim1;
 
-     u -= u_offset;
 
-     v_dim1 = *ldv;
 
-     v_offset = 1 + v_dim1;
 
-     v -= v_offset;
 
-     q_dim1 = *ldq;
 
-     q_offset = 1 + q_dim1;
 
-     q -= q_offset;
 
-     --iwork;
 
-     --tau;
 
-     --work;
 
-     /* Function Body */
 
-     wantu = lsame_(jobu, "U");
 
-     wantv = lsame_(jobv, "V");
 
-     wantq = lsame_(jobq, "Q");
 
-     forwrd = TRUE_;
 
-     *info = 0;
 
-     if (! (wantu || lsame_(jobu, "N"))) {
 
- 	*info = -1;
 
-     } else if (! (wantv || lsame_(jobv, "N"))) {
 
- 	*info = -2;
 
-     } else if (! (wantq || lsame_(jobq, "N"))) {
 
- 	*info = -3;
 
-     } else if (*m < 0) {
 
- 	*info = -4;
 
-     } else if (*p < 0) {
 
- 	*info = -5;
 
-     } else if (*n < 0) {
 
- 	*info = -6;
 
-     } else if (*lda < max(1,*m)) {
 
- 	*info = -8;
 
-     } else if (*ldb < max(1,*p)) {
 
- 	*info = -10;
 
-     } else if (*ldu < 1 || wantu && *ldu < *m) {
 
- 	*info = -16;
 
-     } else if (*ldv < 1 || wantv && *ldv < *p) {
 
- 	*info = -18;
 
-     } else if (*ldq < 1 || wantq && *ldq < *n) {
 
- 	*info = -20;
 
-     }
 
-     if (*info != 0) {
 
- 	i__1 = -(*info);
 
- 	xerbla_("DGGSVP", &i__1);
 
- 	return 0;
 
-     }
 
- /*     QR with column pivoting of B: B*P = V*( S11 S12 ) */
 
- /*                                           (  0   0  ) */
 
-     i__1 = *n;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	iwork[i__] = 0;
 
- /* L10: */
 
-     }
 
-     dgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], info);
 
- /*     Update A := A*P */
 
-     dlapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
 
- /*     Determine the effective rank of matrix B. */
 
-     *l = 0;
 
-     i__1 = min(*p,*n);
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if ((d__1 = b[i__ + i__ * b_dim1], abs(d__1)) > *tolb) {
 
- 	    ++(*l);
 
- 	}
 
- /* L20: */
 
-     }
 
-     if (wantv) {
 
- /*        Copy the details of V, and form V. */
 
- 	dlaset_("Full", p, p, &c_b12, &c_b12, &v[v_offset], ldv);
 
- 	if (*p > 1) {
 
- 	    i__1 = *p - 1;
 
- 	    dlacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2], 
 
- 		    ldv);
 
- 	}
 
- 	i__1 = min(*p,*n);
 
- 	dorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
 
-     }
 
- /*     Clean up B */
 
-     i__1 = *l - 1;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = *l;
 
- 	for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 	    b[i__ + j * b_dim1] = 0.;
 
- /* L30: */
 
- 	}
 
- /* L40: */
 
-     }
 
-     if (*p > *l) {
 
- 	i__1 = *p - *l;
 
- 	dlaset_("Full", &i__1, n, &c_b12, &c_b12, &b[*l + 1 + b_dim1], ldb);
 
-     }
 
-     if (wantq) {
 
- /*        Set Q = I and Update Q := Q*P */
 
- 	dlaset_("Full", n, n, &c_b12, &c_b22, &q[q_offset], ldq);
 
- 	dlapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
 
-     }
 
-     if (*p >= *l && *n != *l) {
 
- /*        RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
 
- 	dgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
 
- /*        Update A := A*Z' */
 
- 	dormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
 
- 		a_offset], lda, &work[1], info);
 
- 	if (wantq) {
 
- /*           Update Q := Q*Z' */
 
- 	    dormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1], 
 
- 		     &q[q_offset], ldq, &work[1], info);
 
- 	}
 
- /*        Clean up B */
 
- 	i__1 = *n - *l;
 
- 	dlaset_("Full", l, &i__1, &c_b12, &c_b12, &b[b_offset], ldb);
 
- 	i__1 = *n;
 
- 	for (j = *n - *l + 1; j <= i__1; ++j) {
 
- 	    i__2 = *l;
 
- 	    for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
 
- 		b[i__ + j * b_dim1] = 0.;
 
- /* L50: */
 
- 	    }
 
- /* L60: */
 
- 	}
 
-     }
 
- /*     Let              N-L     L */
 
- /*                A = ( A11    A12 ) M, */
 
- /*     then the following does the complete QR decomposition of A11: */
 
- /*              A11 = U*(  0  T12 )*P1' */
 
- /*                      (  0   0  ) */
 
-     i__1 = *n - *l;
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	iwork[i__] = 0;
 
- /* L70: */
 
-     }
 
-     i__1 = *n - *l;
 
-     dgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], info);
 
- /*     Determine the effective rank of A11 */
 
-     *k = 0;
 
- /* Computing MIN */
 
-     i__2 = *m, i__3 = *n - *l;
 
-     i__1 = min(i__2,i__3);
 
-     for (i__ = 1; i__ <= i__1; ++i__) {
 
- 	if ((d__1 = a[i__ + i__ * a_dim1], abs(d__1)) > *tola) {
 
- 	    ++(*k);
 
- 	}
 
- /* L80: */
 
-     }
 
- /*     Update A12 := U'*A12, where A12 = A( 1:M, N-L+1:N ) */
 
- /* Computing MIN */
 
-     i__2 = *m, i__3 = *n - *l;
 
-     i__1 = min(i__2,i__3);
 
-     dorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
 
- 	    *n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
 
-     if (wantu) {
 
- /*        Copy the details of U, and form U */
 
- 	dlaset_("Full", m, m, &c_b12, &c_b12, &u[u_offset], ldu);
 
- 	if (*m > 1) {
 
- 	    i__1 = *m - 1;
 
- 	    i__2 = *n - *l;
 
- 	    dlacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
 
- , ldu);
 
- 	}
 
- /* Computing MIN */
 
- 	i__2 = *m, i__3 = *n - *l;
 
- 	i__1 = min(i__2,i__3);
 
- 	dorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
 
-     }
 
-     if (wantq) {
 
- /*        Update Q( 1:N, 1:N-L )  = Q( 1:N, 1:N-L )*P1 */
 
- 	i__1 = *n - *l;
 
- 	dlapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
 
-     }
 
- /*     Clean up A: set the strictly lower triangular part of */
 
- /*     A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
 
-     i__1 = *k - 1;
 
-     for (j = 1; j <= i__1; ++j) {
 
- 	i__2 = *k;
 
- 	for (i__ = j + 1; i__ <= i__2; ++i__) {
 
- 	    a[i__ + j * a_dim1] = 0.;
 
- /* L90: */
 
- 	}
 
- /* L100: */
 
-     }
 
-     if (*m > *k) {
 
- 	i__1 = *m - *k;
 
- 	i__2 = *n - *l;
 
- 	dlaset_("Full", &i__1, &i__2, &c_b12, &c_b12, &a[*k + 1 + a_dim1], 
 
- 		lda);
 
-     }
 
-     if (*n - *l > *k) {
 
- /*        RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
 
- 	i__1 = *n - *l;
 
- 	dgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
 
- 	if (wantq) {
 
- /*           Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1' */
 
- 	    i__1 = *n - *l;
 
- 	    dormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
 
- 		    tau[1], &q[q_offset], ldq, &work[1], info);
 
- 	}
 
- /*        Clean up A */
 
- 	i__1 = *n - *l - *k;
 
- 	dlaset_("Full", k, &i__1, &c_b12, &c_b12, &a[a_offset], lda);
 
- 	i__1 = *n - *l;
 
- 	for (j = *n - *l - *k + 1; j <= i__1; ++j) {
 
- 	    i__2 = *k;
 
- 	    for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] = 0.;
 
- /* L110: */
 
- 	    }
 
- /* L120: */
 
- 	}
 
-     }
 
-     if (*m > *k) {
 
- /*        QR factorization of A( K+1:M,N-L+1:N ) */
 
- 	i__1 = *m - *k;
 
- 	dgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
 
- 		work[1], info);
 
- 	if (wantu) {
 
- /*           Update U(:,K+1:M) := U(:,K+1:M)*U1 */
 
- 	    i__1 = *m - *k;
 
- /* Computing MIN */
 
- 	    i__3 = *m - *k;
 
- 	    i__2 = min(i__3,*l);
 
- 	    dorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n 
 
- 		    - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 + 
 
- 		    1], ldu, &work[1], info);
 
- 	}
 
- /*        Clean up */
 
- 	i__1 = *n;
 
- 	for (j = *n - *l + 1; j <= i__1; ++j) {
 
- 	    i__2 = *m;
 
- 	    for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
 
- 		a[i__ + j * a_dim1] = 0.;
 
- /* L130: */
 
- 	    }
 
- /* L140: */
 
- 	}
 
-     }
 
-     return 0;
 
- /*     End of DGGSVP */
 
- } /* dggsvp_ */
 
 
  |