123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- /* StarPU --- Runtime system for heterogeneous multicore architectures.
- *
- * Copyright (C) 2016-2020 Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria
- *
- * StarPU is free software; you can redistribute it and/or modify
- * it under the terms of the GNU Lesser General Public License as published by
- * the Free Software Foundation; either version 2.1 of the License, or (at
- * your option) any later version.
- *
- * StarPU is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
- *
- * See the GNU Lesser General Public License in COPYING.LGPL for more details.
- */
- /*
- * This examples demonstrates how to use multiple linear regression
- models.
- First, there is mlr_codelet__init codelet for which we know the
- parameters, but not the their exponents and relations. This tasks
- should be benchmarked and analyzed to find the model, using
- "tools/starpu_mlr_analysis" script as a template.
- For the second (codelet cl_model_final), it is assumed that the
- analysis has already been performed and that the duration of the
- codelet mlr_codelet_final will be computed using the following
- equation:
- T = a + b * (M^2*N) + c * (N^3*K)
- where M, N, K are the parameters of the task, exponents are coming
- from model->combinations[..][..] and finally a, b, c are
- coefficients which mostly depend on the machine speed.
- These coefficients are going to be automatically computed using
- least square method.
- */
- #include <stdio.h>
- #include <stdlib.h>
- #include <stdint.h>
- #include <starpu.h>
- static long sum;
- /* Performance function of the task, which is in this case very simple, as the parameter values just need to be written in the array "parameters" */
- static void cl_params(struct starpu_task *task, double *parameters)
- {
- int m, n, k;
- int* vector_mn;
- vector_mn = (int*)STARPU_VECTOR_GET_PTR(task->interfaces[0]);
- m = vector_mn[0];
- n = vector_mn[1];
- starpu_codelet_unpack_args(task->cl_arg, &k);
- parameters[0] = m;
- parameters[1] = n;
- parameters[2] = k;
- }
- /* Function of the task that will be executed. In this case running dummy cycles, just to make sure task duration is significant */
- void cpu_func(void *buffers[], void *cl_arg)
- {
- long i;
- int m,n,k;
- int* vector_mn;
- vector_mn = (int*)STARPU_VECTOR_GET_PTR(buffers[0]);
- m = vector_mn[0];
- n = vector_mn[1];
- starpu_codelet_unpack_args(cl_arg, &k);
- for(i=0; i < (long) (m*m*n); i++)
- sum+=i;
- for(i=0; i < (long) (n*n*n*k); i++)
- sum+=i;
- }
- /* ############################################ */
- /* Start of the part specific to multiple linear regression perfmodels */
- /* Defining perfmodel, number of parameters and their names Initially
- application developer only knows these parameters. The execution of
- this codelet will generate traces that can be analyzed using
- "tools/starpu_mlr_analysis" as a template to obtain the parameters
- combinations and exponents.
- */
- static const char * parameters_names[] = { "M", "N", "K", };
- static struct starpu_perfmodel cl_model_init =
- {
- .type = STARPU_MULTIPLE_REGRESSION_BASED,
- .symbol = "mlr_init",
- .parameters = cl_params,
- .nparameters = 3,
- .parameters_names = parameters_names,
- };
- /* Defining the equation for modeling duration of the task. The
- parameters combinations and exponents are computed externally
- offline, for example using "tools/starpu_mlr_analysis" tool as a
- template.
- */
- /* M^2 * N^1 * K^0 */
- static unsigned combi1 [3] = { 2, 1, 0 };
- /* M^0 * N^3 * K^1 */
- static unsigned combi2 [3] = { 0, 3, 1 };
- static unsigned *combinations[] = { combi1, combi2 };
- static struct starpu_perfmodel cl_model_final =
- {
- .type = STARPU_MULTIPLE_REGRESSION_BASED,
- .symbol = "mlr_final",
- .parameters = cl_params,
- .nparameters = 3,
- .parameters_names = parameters_names,
- .ncombinations = 2,
- .combinations = combinations,
- };
- /* End of the part specific to multiple linear regression perfmodels */
- /* ############################################ */
- static struct starpu_codelet cl_init =
- {
- .cpu_funcs = { cpu_func },
- .cpu_funcs_name = { "cpu_func" },
- .nbuffers = 1,
- .modes = {STARPU_R},
- .model = &cl_model_init,
- };
- static struct starpu_codelet cl_final =
- {
- .cpu_funcs = { cpu_func },
- .cpu_funcs_name = { "cpu_func" },
- .nbuffers = 1,
- .modes = {STARPU_R},
- .model = &cl_model_final,
- };
- int main(void)
- {
- /* Initialization */
- unsigned i;
- int ret;
- ret = starpu_init(NULL);
- if (ret == -ENODEV)
- return 77;
- sum=0;
- int* vector_mn = calloc(2, sizeof(int));
- starpu_data_handle_t vector_mn_handle;
- starpu_vector_data_register(&vector_mn_handle,
- STARPU_MAIN_RAM,
- (uintptr_t)vector_mn, 2,
- sizeof(int));
- /* Giving pseudo-random values to the M,N,K parameters and inserting tasks */
- for (i = 0; i < 42; i++)
- {
- int j;
- int m,n,k;
- m = (int) ((rand() % 10)+1);
- n = (int) ((rand() % 10)+1);
- k = (int) ((rand() % 10)+1);
- /* To illustrate the usage, M and N are stored in a data handle */
- starpu_data_acquire(vector_mn_handle, STARPU_W);
- vector_mn[0] = m;
- vector_mn[1] = n;
- starpu_data_release(vector_mn_handle);
- for (j = 0; j < 42; j++)
- {
- starpu_insert_task(&cl_init,
- STARPU_R, vector_mn_handle,
- STARPU_VALUE, &k, sizeof(int),
- 0);
- starpu_insert_task(&cl_final,
- STARPU_R, vector_mn_handle,
- STARPU_VALUE, &k, sizeof(int),
- 0);
- }
- }
- starpu_data_unregister(vector_mn_handle);
- free(vector_mn);
- starpu_shutdown();
- return 0;
- }
|