pi_redux.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. /* StarPU --- Runtime system for heterogeneous multicore architectures.
  2. *
  3. * Copyright (C) 2010-2015 Université de Bordeaux
  4. *
  5. * StarPU is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU Lesser General Public License as published by
  7. * the Free Software Foundation; either version 2.1 of the License, or (at
  8. * your option) any later version.
  9. *
  10. * StarPU is distributed in the hope that it will be useful, but
  11. * WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  13. *
  14. * See the GNU Lesser General Public License in COPYING.LGPL for more details.
  15. */
  16. /*
  17. * This computes Pi by using drawing random coordinates (thanks to the sobol
  18. * generator) and check whether they fall within one quarter of a circle. The
  19. * proportion gives an approximation of Pi. For each task, we draw a number of
  20. * coordinates, and we gather the number of successful draws.
  21. *
  22. * This version uses reduction to optimize gathering the number of successful
  23. * draws.
  24. */
  25. #include <starpu.h>
  26. #include <stdlib.h>
  27. #define FPRINTF(ofile, fmt, ...) do { if (!getenv("STARPU_SSILENT")) {fprintf(ofile, fmt, ## __VA_ARGS__); }} while(0)
  28. #define PI 3.14159265358979323846
  29. #if defined(STARPU_USE_CUDA) && !defined(STARPU_HAVE_CURAND)
  30. #warning CURAND is required to run that example on CUDA devices
  31. #endif
  32. #ifdef STARPU_HAVE_CURAND
  33. #include <cuda.h>
  34. #include <curand.h>
  35. #endif
  36. static unsigned long long nshot_per_task = 16*1024*1024ULL;
  37. /* default value */
  38. static unsigned long ntasks = 1024;
  39. static unsigned long ntasks_warmup = 0;
  40. static unsigned use_redux = 1;
  41. static unsigned do_warmup = 0;
  42. /*
  43. * Initialization of the Random Number Generators (RNG)
  44. */
  45. #ifdef STARPU_HAVE_CURAND
  46. /* RNG for the CURAND library */
  47. static curandGenerator_t curandgens[STARPU_NMAXWORKERS];
  48. #endif
  49. /* state for the erand48 function : note the huge padding to avoid false-sharing */
  50. #define PADDING 1024
  51. static unsigned short xsubi[STARPU_NMAXWORKERS*PADDING];
  52. static starpu_drand48_data randbuffer[STARPU_NMAXWORKERS*PADDING];
  53. /* Function to initialize the random number generator in the current worker */
  54. static void init_rng(void *arg STARPU_ATTRIBUTE_UNUSED)
  55. {
  56. #ifdef STARPU_HAVE_CURAND
  57. curandStatus_t res;
  58. #endif
  59. int workerid = starpu_worker_get_id();
  60. switch (starpu_worker_get_type(workerid))
  61. {
  62. case STARPU_CPU_WORKER:
  63. /* create a seed */
  64. starpu_srand48_r((long int)workerid, &randbuffer[PADDING*workerid]);
  65. xsubi[0 + PADDING*workerid] = (unsigned short)workerid;
  66. xsubi[1 + PADDING*workerid] = (unsigned short)workerid;
  67. xsubi[2 + PADDING*workerid] = (unsigned short)workerid;
  68. break;
  69. #ifdef STARPU_HAVE_CURAND
  70. case STARPU_CUDA_WORKER:
  71. /* Create a RNG */
  72. res = curandCreateGenerator(&curandgens[workerid],
  73. CURAND_RNG_PSEUDO_DEFAULT);
  74. STARPU_ASSERT(res == CURAND_STATUS_SUCCESS);
  75. /* Seed it with worker's id */
  76. res = curandSetPseudoRandomGeneratorSeed(curandgens[workerid],
  77. (unsigned long long)workerid);
  78. STARPU_ASSERT(res == CURAND_STATUS_SUCCESS);
  79. break;
  80. #endif
  81. default:
  82. STARPU_ABORT();
  83. break;
  84. }
  85. }
  86. /* The amount of work does not depend on the data size at all :) */
  87. static size_t size_base(struct starpu_task *task, unsigned nimpl)
  88. {
  89. return nshot_per_task;
  90. }
  91. static void parse_args(int argc, char **argv)
  92. {
  93. int i;
  94. for (i = 1; i < argc; i++)
  95. {
  96. if (strcmp(argv[i], "-ntasks") == 0)
  97. {
  98. char *argptr;
  99. ntasks = strtol(argv[++i], &argptr, 10);
  100. }
  101. if (strcmp(argv[i], "-nshot") == 0)
  102. {
  103. char *argptr;
  104. nshot_per_task = strtol(argv[++i], &argptr, 10);
  105. }
  106. if (strcmp(argv[i], "-noredux") == 0)
  107. {
  108. use_redux = 0;
  109. }
  110. if (strcmp(argv[i], "-warmup") == 0)
  111. {
  112. do_warmup = 1;
  113. ntasks_warmup = 8; /* arbitrary number of warmup tasks */
  114. }
  115. if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0)
  116. {
  117. fprintf(stderr, "Usage: %s [-ntasks n] [-noredux] [-warmup] [-h]\n", argv[0]);
  118. exit(-1);
  119. }
  120. }
  121. }
  122. /*
  123. * Monte-carlo kernel
  124. */
  125. void pi_func_cpu(void *descr[], void *cl_arg STARPU_ATTRIBUTE_UNUSED)
  126. {
  127. int workerid = starpu_worker_get_id();
  128. unsigned short *worker_xsub;
  129. worker_xsub = &xsubi[PADDING*workerid];
  130. struct drand48_data *buffer;
  131. buffer = &randbuffer[PADDING*workerid];
  132. unsigned long local_cnt = 0;
  133. /* Fill the scratchpad with random numbers */
  134. unsigned i;
  135. for (i = 0; i < nshot_per_task; i++)
  136. {
  137. double randx, randy;
  138. starpu_erand48_r(worker_xsub, buffer, &randx);
  139. starpu_erand48_r(worker_xsub, buffer, &randy);
  140. double x = (2.0*randx - 1.0);
  141. double y = (2.0*randy - 1.0);
  142. double dist = x*x + y*y;
  143. if (dist < 1.0)
  144. local_cnt++;
  145. }
  146. /* Put the contribution of that task into the counter */
  147. unsigned long *cnt = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[1]);
  148. *cnt = *cnt + local_cnt;
  149. }
  150. extern void pi_redux_cuda_kernel(float *x, float *y, unsigned n, unsigned long *shot_cnt);
  151. #ifdef STARPU_HAVE_CURAND
  152. static void pi_func_cuda(void *descr[], void *cl_arg STARPU_ATTRIBUTE_UNUSED)
  153. {
  154. curandStatus_t res;
  155. int workerid = starpu_worker_get_id();
  156. /* CURAND is a bit silly: it assumes that any error is fatal. Calling
  157. * cudaGetLastError resets the last error value. */
  158. (void) cudaGetLastError();
  159. /* Fill the scratchpad with random numbers. Note that both x and y
  160. * arrays are in stored the same vector. */
  161. float *scratchpad_xy = (float *)STARPU_VECTOR_GET_PTR(descr[0]);
  162. res = curandGenerateUniform(curandgens[workerid], scratchpad_xy, 2*nshot_per_task);
  163. STARPU_ASSERT(res == CURAND_STATUS_SUCCESS);
  164. float *x = &scratchpad_xy[0];
  165. float *y = &scratchpad_xy[nshot_per_task];
  166. unsigned long *shot_cnt = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[1]);
  167. pi_redux_cuda_kernel(x, y, nshot_per_task, shot_cnt);
  168. }
  169. #endif
  170. static struct starpu_perfmodel pi_model =
  171. {
  172. .type = STARPU_HISTORY_BASED,
  173. .size_base = size_base,
  174. .symbol = "monte_carlo_pi_scratch"
  175. };
  176. static struct starpu_codelet pi_cl =
  177. {
  178. .cpu_funcs = {pi_func_cpu},
  179. .cpu_funcs_name = {"pi_func_cpu"},
  180. #ifdef STARPU_HAVE_CURAND
  181. .cuda_funcs = {pi_func_cuda},
  182. #endif
  183. .nbuffers = 2,
  184. .modes = {STARPU_SCRATCH, STARPU_RW},
  185. .model = &pi_model
  186. };
  187. static struct starpu_perfmodel pi_model_redux =
  188. {
  189. .type = STARPU_HISTORY_BASED,
  190. .size_base = size_base,
  191. .symbol = "monte_carlo_pi_scratch_redux"
  192. };
  193. static struct starpu_codelet pi_cl_redux =
  194. {
  195. .cpu_funcs = {pi_func_cpu},
  196. .cpu_funcs_name = {"pi_func_cpu"},
  197. #ifdef STARPU_HAVE_CURAND
  198. .cuda_funcs = {pi_func_cuda},
  199. #endif
  200. .nbuffers = 2,
  201. .modes = {STARPU_SCRATCH, STARPU_REDUX},
  202. .model = &pi_model_redux
  203. };
  204. /*
  205. * Codelets to implement reduction
  206. */
  207. void init_cpu_func(void *descr[], void *cl_arg)
  208. {
  209. unsigned long *val = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[0]);
  210. *val = 0;
  211. }
  212. #ifdef STARPU_HAVE_CURAND
  213. static void init_cuda_func(void *descr[], void *cl_arg)
  214. {
  215. unsigned long *val = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[0]);
  216. cudaMemsetAsync(val, 0, sizeof(unsigned long), starpu_cuda_get_local_stream());
  217. }
  218. #endif
  219. static struct starpu_codelet init_codelet =
  220. {
  221. .cpu_funcs = {init_cpu_func},
  222. .cpu_funcs_name = {"init_cpu_func"},
  223. #ifdef STARPU_HAVE_CURAND
  224. .cuda_funcs = {init_cuda_func},
  225. .cuda_flags = {STARPU_CUDA_ASYNC},
  226. #endif
  227. .modes = {STARPU_W},
  228. .nbuffers = 1
  229. };
  230. #ifdef STARPU_HAVE_CURAND
  231. /* Dummy implementation of the addition of two unsigned longs in CUDA */
  232. static void redux_cuda_func(void *descr[], void *cl_arg)
  233. {
  234. unsigned long *d_a = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[0]);
  235. unsigned long *d_b = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[1]);
  236. unsigned long h_a, h_b;
  237. cudaMemcpyAsync(&h_a, d_a, sizeof(h_a), cudaMemcpyDeviceToHost, starpu_cuda_get_local_stream());
  238. cudaMemcpyAsync(&h_b, d_b, sizeof(h_b), cudaMemcpyDeviceToHost, starpu_cuda_get_local_stream());
  239. cudaStreamSynchronize(starpu_cuda_get_local_stream());
  240. h_a += h_b;
  241. cudaMemcpyAsync(d_a, &h_a, sizeof(h_a), cudaMemcpyHostToDevice, starpu_cuda_get_local_stream());
  242. }
  243. #endif
  244. void redux_cpu_func(void *descr[], void *cl_arg)
  245. {
  246. unsigned long *a = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[0]);
  247. unsigned long *b = (unsigned long *)STARPU_VARIABLE_GET_PTR(descr[1]);
  248. *a = *a + *b;
  249. }
  250. static struct starpu_codelet redux_codelet =
  251. {
  252. .cpu_funcs = {redux_cpu_func},
  253. .cpu_funcs_name = {"redux_cpu_func"},
  254. #ifdef STARPU_HAVE_CURAND
  255. .cuda_funcs = {redux_cuda_func},
  256. .cuda_flags = {STARPU_CUDA_ASYNC},
  257. #endif
  258. .modes = {STARPU_RW, STARPU_R},
  259. .nbuffers = 2
  260. };
  261. /*
  262. * Main program
  263. */
  264. int main(int argc, char **argv)
  265. {
  266. unsigned i;
  267. int ret;
  268. /* Not supported yet */
  269. if (starpu_get_env_number_default("STARPU_GLOBAL_ARBITER", 0) > 0)
  270. return 77;
  271. parse_args(argc, argv);
  272. ret = starpu_init(NULL);
  273. if (ret == -ENODEV) return 77;
  274. STARPU_CHECK_RETURN_VALUE(ret, "starpu_init");
  275. /* Launch a Random Number Generator (RNG) on each worker */
  276. starpu_execute_on_each_worker(init_rng, NULL, STARPU_CPU|STARPU_CUDA);
  277. /* Create a scratchpad data */
  278. starpu_data_handle_t xy_scratchpad_handle;
  279. starpu_vector_data_register(&xy_scratchpad_handle, -1, (uintptr_t)NULL,
  280. 2*nshot_per_task, sizeof(float));
  281. /* Create a variable that will be used to count the number of shots
  282. * that actually hit the unit circle when shooting randomly in
  283. * [-1,1]^2. */
  284. unsigned long shot_cnt = 0;
  285. starpu_data_handle_t shot_cnt_handle;
  286. starpu_variable_data_register(&shot_cnt_handle, STARPU_MAIN_RAM,
  287. (uintptr_t)&shot_cnt, sizeof(shot_cnt));
  288. starpu_data_set_reduction_methods(shot_cnt_handle,
  289. &redux_codelet, &init_codelet);
  290. double start;
  291. double end;
  292. for (i = 0; i < ntasks_warmup; i++)
  293. {
  294. struct starpu_task *task = starpu_task_create();
  295. task->cl = use_redux?&pi_cl_redux:&pi_cl;
  296. task->handles[0] = xy_scratchpad_handle;
  297. task->handles[1] = shot_cnt_handle;
  298. ret = starpu_task_submit(task);
  299. STARPU_ASSERT(!ret);
  300. }
  301. start = starpu_timing_now();
  302. for (i = 0; i < ntasks; i++)
  303. {
  304. struct starpu_task *task = starpu_task_create();
  305. task->cl = use_redux?&pi_cl_redux:&pi_cl;
  306. task->handles[0] = xy_scratchpad_handle;
  307. task->handles[1] = shot_cnt_handle;
  308. ret = starpu_task_submit(task);
  309. STARPU_ASSERT(!ret);
  310. }
  311. starpu_data_unregister(shot_cnt_handle);
  312. starpu_data_unregister(xy_scratchpad_handle);
  313. end = starpu_timing_now();
  314. double timing = end - start;
  315. /* Total surface : Pi * r^ 2 = Pi*1^2, total square surface : 2^2 = 4,
  316. * probability to impact the disk: pi/4 */
  317. unsigned long total = (ntasks + ntasks_warmup)*nshot_per_task;
  318. double pi_approx = ((double)shot_cnt*4.0)/total;
  319. FPRINTF(stderr, "Reductions? %s\n", use_redux?"yes":"no");
  320. FPRINTF(stderr, "Pi approximation : %f (%ld / %ld)\n", pi_approx, shot_cnt, total);
  321. FPRINTF(stderr, "Error %e \n", pi_approx - PI);
  322. FPRINTF(stderr, "Total time : %f ms\n", timing/1000.0);
  323. FPRINTF(stderr, "Speed : %f GShot/s\n", total/(1e3*timing));
  324. starpu_shutdown();
  325. if (abs(pi_approx - PI) > 1.0)
  326. return 1;
  327. return 0;
  328. }